Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 24(8): 1142-6, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20301108

ABSTRACT

High valent metal(IV)-oxo species, [M(==O)(MeIm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions [M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions [M(MeIm)(OAc)](+) and [M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding [M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed.


Subject(s)
Metals/chemistry , Organometallic Compounds/chemistry , Tandem Mass Spectrometry/methods , Cations/chemistry , Gases/chemistry , Imidazoles/chemistry , Ozone/chemistry
2.
Inorg Chem ; 48(11): 4863-72, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19400558

ABSTRACT

The preparation and detailed characterizations of the high-spin seven-coordinate complexes [M(kappa(7)N-L)](ClO(4))(2) (M = Mn(II), Fe(II); L = N,N,N',N'-tetrakis(2-pyridylmethyl)-2,6-bis(aminomethyl)pyridine) are described. The X-ray crystal structures reveal seven-coordinate metal complex ions. Consideration of continuous shape measures reveals that the coordination environments about the metal ions are better described as having (C(s)) face-capped trigonal prismatic symmetry than (C(2)) pentagonal bipyramidal symmetry. The (S = (5)/(2)) Mn(II) species shows complicated X-band electron paramagnetic resonance (EPR) spectra and broad, unrevealing (1)H NMR spectra. In contrast, the (S = 2) Fe(II) complex is EPR-silent and shows completely interpretable (1)H NMR spectra containing the requisite number of paramagnetically shifted peaks in the range delta +150 to -60. The (13)C NMR spectra are likewise informative. Variable-temperature (1)H NMR spectra show coalescences and decoalescences indicative of an intramolecular process that pairwise-exchanges the nonequivalent pyridylmethyl "arms" of the two bis(pyridylmethyl)amine (bpa) domains. A suite of NMR techniques, including T(1) relaxation measurements and variable-temperature (1)H-(1)H correlation spectroscopy, (1)H-(1)H total correlation spectroscopy, (1)H-(1)H nuclear Overhauser effect spectroscopy/exchange spectroscopy, and (1)H-(13)C heteronuclear multiple-quantum coherence experiments, has been used to assign the NMR spectra and characterize the exchange process. Analysis of the data from these experiments yields the following thermodynamic parameters for the exchange: DeltaH++ = 53.6 +/- 2.8 kJ mol(-1), DeltaS++ = -10.0 +/- 9.8 J K(-1) mol(-1), and DeltaG++ (298 K) = 50.6 kJ mol(-1). Density functional theory (B3LYP) calculations have been used to explore the energetics of possible mechanistic pathways for the underlying fluxional process. The most plausible mechanism found involves dissociation of a pyridylmethyl arm to afford a strained six-coordinate species followed by rebinding of the arm in a different position to afford a new seven-coordinate transition state in which the pyridylmethyl arms within each bpa domain are essentially equivalent; the calculated energy barrier for this process is 53.5 kJ mol(-1), in good agreement with the observations.


Subject(s)
Ferrous Compounds/chemistry , Magnetics , Models, Chemical , Temperature , Computer Simulation , Crystallography, X-Ray , Ferrous Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...