Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 69(4): 1298-308, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14961684

ABSTRACT

Tri- and tetrasubstituted anilines are formed in good to excellent yields by the addition of ketones to vinamidinium salts (up to 98%). The reaction proceeds via the formation of dienone intermediates, which react to form an enamine with the liberated amine. In the case of a nitro, or dimethylaminomethylene substituent, the enamines undergo a facile electrocyclic ring closure to form a cyclohexadiene, which goes on to form anilines with a high degree of selectivity (up to 50:1) with a minor competing pathway proceeding via the enol providing phenols. Competition experiments using isotopic substitution reveal that the rate determining step en route to dienone is enol/enolate addition to the vinamidinium salt, which is characterized by an inverse secondary isotope effect (k(H/D) 0.7-0.9). Computational studies have been used to provide a framework for understanding the reaction pathway. The original proposal for a [1,5]-H shift was ruled out on the basis of the calculations, which did not locate a thermally accessible transition state. The minimum energy conformation of the enamine is such that a facile electrocyclic ring closure is ensured, which is corroborated by the experimental studies. A framework for understanding the reaction pathway is presented.

2.
Org Lett ; 4(3): 439-41, 2002 Feb 07.
Article in English | MEDLINE | ID: mdl-11820899

ABSTRACT

Addition of methyl acetoacetate to 2-nitrovinamidinium hexafluorophosphate salts leads to the formation of anilines or phenols in good to excellent yields depending on the alkylamine substituents. Small substituents, e.g., pyrrolidine, lead to the formation of anilines while large substituents, e.g., N,N-diisopropyl, exclusively give phenols. Labeling studies implicate a [1,5]-H shift proceeding with excellent isotopic fidelity.

SELECTION OF CITATIONS
SEARCH DETAIL
...