Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37961442

ABSTRACT

Glycine max, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds. Genome-wide association studies have found natural variants associated with RCC, however causal mechanisms are unclear. Auxin modulates plant growth and development and has been implicated in RCC traits. Therefore, modulation of auxin regulatory genes may enhance RCC. Here, we focus on the use of genomic tools and existing datasets to identify auxin signaling pathway RCC candidate genes, using a comparative phylogenetics and expression analysis approach. We identified genes encoding 14 TIR1/AFB auxin receptors, 61 Aux/IAA auxin co-receptors and transcriptional co-repressors, and 55 ARF auxin response factors in the soybean genome. We used Bayesian phylogenetic inference to identify soybean orthologs of Arabidopsis thaliana genes, and defined an ortholog naming system for these genes. To further define potential auxin signaling candidate genes for RCC, we examined tissue-level expression of these genes in existing datasets and identified highly expressed auxin signaling genes in apical tissues early in development. We identified at least 4 TIR1/AFB, 8 Aux/IAA, and 8 ARF genes with highly specific expression in one or more RCC-associated tissues. We hypothesize that modulating the function of these genes through gene editing or traditional breeding will have the highest likelihood of affecting RCC while minimizing pleiotropic effects.

2.
Plants (Basel) ; 10(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34834634

ABSTRACT

BACKGROUND: Regeneration of fertile plants from tissue culture is a critical bottleneck in the application of new plant breeding technologies. Ectopic overexpression of morphogenic factors is a promising workaround for this hurdle. METHODS: Conditional overexpression of WUS and ARF5Δ was used to study the effect of timing the overexpression of these morphogenic factors during shoot regeneration from root explants in Arabidopsis. In addition, their effect on auxin-signaling activation was examined by visualization and cytometric quantification of the DR5:GFP auxin-signaling reporter in roots and protoplasts, respectively. RESULTS: The induced expression of both WUS and ARF5Δ led to an activation of auxin signaling in roots. Activation of auxin signaling by WUS and ARF5Δ was further quantified by transient transformation of protoplasts. Ectopic overexpression of both WUS and ARF5Δ enhanced regeneration efficiency, but only during the shoot-induction stage of regeneration and not during the callus-induction stage. CONCLUSIONS: The overexpression of WUS and ARF5Δ both lead to activation of auxin signaling. Expression during the shoot-induction stage is critical for the enhancement of shoot regeneration by WUS and ARF5Δ.

SELECTION OF CITATIONS
SEARCH DETAIL
...