Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 635397, 2021.
Article in English | MEDLINE | ID: mdl-33854519

ABSTRACT

Heat stress at booting stage causes significant losses to floret fertility (grain set) and hence yield in wheat (Triticum aestivum L.); however, there is a lack of well-characterized sources of tolerance to this type of stress. Here, we describe the genetic analysis of booting stage heat tolerance in a cross between the Australian cultivars Drysdale (intolerant) and Waagan (tolerant), leading to the definition of a major-effect tolerance locus on the short arm of chromosome 2B, Wheat thermosensitive male sterile Drysdale/Waagan (WtmsDW). WtmsDW offsets between 44 and 65% of the losses in grain set due to heat, suggesting that it offers significant value for marker-assisted tolerance breeding. In lines lacking the WtmsDW tolerance allele, peaks in sensitivity were defined with reference to auricle distance, for various floret positions along the spike. Other (relatively minor) floret fertility response effects, including at the Rht-D1 dwarfing locus, were considered likely escape artifacts, due to their association with height and flowering time effects that might interfere with correct staging of stems for heat treatment. Heat stress increased grain set at distal floret positions in spikelets located at the top of the spike and increased the size of spikelets at the base of the spike, but these effects were offset by greater reductions in grain set at other floret positions. Potentially orthologous loci on chromosomes 1A and 1B were identified for heat response of flowering time. The potential significance of these findings for tolerance breeding and further tolerance screening is discussed.

2.
Mol Breed ; 41(12): 78, 2021 Dec.
Article in English | MEDLINE | ID: mdl-37309516

ABSTRACT

The root-lesion nematode Pratylenchus thornei Sher & Allen, 1953 is a damaging parasite of many crop plants, including the grain legume chickpea (Cicer arietinum L.). Within cultivated chickpea, there are no known sources of strong resistance to P. thornei, but some cultivars have partial resistance. In the research reported here, the genetic basis for differences in P. thornei resistance was analysed using a population derived by accelerated single seed descent from a cross between a partially resistant cultivar, PBA HatTrick, and a very susceptible cultivar, Kyabra. A genetic linkage map was constructed from genotyping-by-sequencing data. Two quantitative trait loci were mapped, one on the Ca4 chromosome and one on the Ca7 chromosome. The Ca7 locus had a greater and more consistent effect than the Ca4 locus. Marker assays designed for single nucleotide polymorphisms on Ca7 were applied to a panel of chickpea accessions. Some of these markers should be useful for marker-assisted selection in chickpea breeding. Haplotype analysis confirmed the Iranian landrace ICC14903 to be the source of the resistance allele in PBA HatTrick and indicated that other Australian cultivars inherited the same allele from other Iranian landraces. A candidate region was defined on the Ca7 pseudomolecule. Within that region, 69 genes have been predicted with high confidence. Among these, two have annotations related to biotic stress response. Three others have previously been reported to be expressed in roots of PBA HatTrick and Kyabra, including one that is more highly expressed in PBA HatTrick than in Kyabra. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01271-8.

3.
Theor Appl Genet ; 133(2): 635-652, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31813000

ABSTRACT

KEY MESSAGE: Resistance QTL to root lesion nematode (Pratylenchus thornei) in wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were mapped to intervals of 3.5 cM/1.77 Mbp on chromosome 6D and 1.4 cM/2.19 Mbp on chromosome 2B, respectively. Candidate resistance genes were identified in the QTL regions and molecular markers developed for marker-assisted breeding. Two previously known resistance QTL for root lesion nematode (Pratylenchus thornei) in bread wheat (Triticum aestivum), QRlnt.sk-6D and QRlnt.sk-2B, were fine-mapped using a Sokoll (moderately resistant) by Krichauff (susceptible) doubled haploid (DH) population and six newly developed recombinant inbred line populations. Bulked segregation analysis with the 90K wheat SNP array identified linked SNPs which were subsequently converted to KASP assays for mapping in the DH and RIL populations. On chromosome 6D, 60 KASP and five SSR markers spanned a total genetic distance of 23.7 cM. QRlnt.sk-6D was delimited to a 3.5 cM interval, representing 1.77 Mbp in the bread wheat cv. Chinese Spring reference genome sequence and 2.29 Mbp in the Aegilops tauschii genome sequence. These intervals contained 42 and 43 gene models in the respective annotated genome sequences. On chromosome 2B, 41 KASP and 5 SSR markers produced a map spanning 19.9 cM. QRlnt.sk-2B was delimited to 1.4 cM, corresponding 3.14 Mbp in the durum wheat cv. Svevo reference sequence and 2.19 Mbp in Chinese Spring. The interval in Chinese Spring contained 56 high-confidence gene models. Intervals for both QTL contained genes with similarity to those previously reported to be involved in disease resistance, namely genes for phenylpropanoid biosynthetic pathway-related enzymes, NBS-LRR proteins and protein kinases. The potential roles of these candidate genes in P. thornei resistance are discussed. The KASP markers reported in this study could potentially be used for marker-assisted breeding of P. thornei-resistant wheat cultivars.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics , Tylenchida/pathogenicity , Animals , Chromosome Mapping , Gene Expression Regulation, Plant/genetics , Genes, Plant , Genetic Linkage , Genotype , Phenotype , Plant Diseases/parasitology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/metabolism
4.
BMC Plant Biol ; 16: 100, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27101979

ABSTRACT

BACKGROUND: Molecular markers and knowledge of traits associated with heat tolerance are likely to provide breeders with a more efficient means of selecting wheat varieties able to maintain grain size after heat waves during early grain filling. RESULTS: A population of 144 doubled haploids derived from a cross between the Australian wheat varieties Drysdale and Waagan was mapped using the wheat Illumina iSelect 9,000 feature single nucleotide polymorphism marker array and used to detect quantitative trait loci for heat tolerance of final single grain weight and related traits. Plants were subjected to a 3 d heat treatment (37 °C/27 °C day/night) in a growth chamber at 10 d after anthesis and trait responses calculated by comparison to untreated control plants. A locus for single grain weight stability was detected on the short arm of chromosome 3B in both winter- and autumn-sown experiments, determining up to 2.5 mg difference in heat-induced single grain weight loss. In one of the experiments, a locus with a weaker effect on grain weight stability was detected on chromosome 6B. Among the traits measured, the rate of flag leaf chlorophyll loss over the course of the heat treatment and reduction in shoot weight due to heat were indicators of loci with significant grain weight tolerance effects, with alleles for grain weight stability also conferring stability of chlorophyll ('stay-green') and shoot weight. Chlorophyll loss during the treatment, requiring only two non-destructive readings to be taken, directly before and after a heat event, may prove convenient for identifying heat tolerant germplasm. These results were consistent with grain filling being limited by assimilate supply from the heat-damaged photosynthetic apparatus, or alternatively, accelerated maturation in the grains that was correlated with leaf senescence responses merely due to common genetic control of senescence responses in the two organs. There was no evidence for a role of mobilized stem reserves (water soluble carbohydrates) in determining grain weight responses. CONCLUSIONS: Molecular markers for the 3B or 6B loci, or the facile measurement of chlorophyll loss over the heat treatment, could be used to assist identification of heat tolerant genotypes for breeding.


Subject(s)
Chromosomes, Plant/genetics , Edible Grain/genetics , Genes, Plant/genetics , Hot Temperature , Quantitative Trait Loci/genetics , Triticum/genetics , Adaptation, Physiological/genetics , Australia , Chlorophyll/metabolism , Chromosome Mapping , Crosses, Genetic , Edible Grain/growth & development , Genotype , Haploidy , Heat-Shock Response/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Polymorphism, Single Nucleotide , Seasons , Triticum/growth & development , Triticum/metabolism
5.
J Exp Bot ; 67(9): 2847-60, 2016 04.
Article in English | MEDLINE | ID: mdl-27001921

ABSTRACT

Atmospheric vapor pressure deficit (VPD) is a key component of drought and has a strong influence on yields. Whole-plant transpiration rate (TR) response to increasing VPD has been linked to drought tolerance in wheat, but because of its challenging phenotyping, its genetic basis remains unexplored. Further, the genetic control of other key traits linked to daytime TR such as leaf area, stomata densities and - more recently - nocturnal transpiration remains unknown. Considering the presence of wheat phenology genes that can interfere with drought tolerance, the aim of this investigation was to identify at an enhanced resolution the genetic basis of the above traits while investigating the effects of phenology genes Ppd-D1 and Ppd-B1 Virtually all traits were highly heritable (heritabilities from 0.61 to 0.91) and a total of mostly trait-specific 68 QTL were detected. Six QTL were identified for TR response to VPD, with one QTL (QSLP.ucl-5A) individually explaining 25.4% of the genetic variance. This QTL harbored several genes previously reported to be involved in ABA signaling, interaction with DREB2A and root hydraulics. Surprisingly, nocturnal TR and stomata densities on both leaf sides were characterized by highly specific and robust QTL. In addition, negative correlations were found between TR and leaf area suggesting trade-offs between these traits. Further, Ppd-D1 had strong but opposite effects on these traits, suggesting an involvement in this trade-off. Overall, these findings revealed novel genetic resources while suggesting a more direct role of phenology genes in enhancing wheat drought tolerance.


Subject(s)
Plant Transpiration/physiology , Triticum/physiology , Dehydration , Genes, Plant/genetics , Genes, Plant/physiology , Genetic Variation , Plant Leaves/physiology , Plant Stomata/genetics , Plant Stomata/physiology , Plant Transpiration/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Triticum/genetics , Vapor Pressure
6.
Plant Sci ; 233: 143-154, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25711822

ABSTRACT

Mapping of quantitative trait loci associated with levels of individual metabolites (mQTL) was combined with the mapping of agronomic traits to investigate the genetic basis of variation and co-variation in metabolites, agronomic traits, and plant phenology in a field-grown bread wheat population. Metabolome analysis was performed using liquid chromatography-mass spectrometry resulting in identification of mainly polar compounds, including secondary metabolites. A total of 558 metabolic features were obtained from the flag leaves of 179 doubled haploid lines, of which 197 features were putatively identified, mostly as alkaloids, flavonoids and phenylpropanoids. Coordinated genetic control was observed for several groups of metabolites, such as organic acids influenced by two loci on chromosome 7A. Five major phenology-related loci, which were introduced as cofactors in the analyses, differed in their impact upon metabolic and agronomic traits with QZad-aww-7A having more impact on the expression of both metabolite and agronomic QTL than Ppd-B1, Vrn-A1, Eps, and QZad-aww-7D. This QTL study validates the utility of combining agronomic and metabolomic traits as an approach to identify potential trait enhancement targets for breeding selection and reinforces previous results that demonstrate the importance of including plant phenology in the assessment of useful traits in this wheat mapping population.


Subject(s)
Metabolic Networks and Pathways/genetics , Quantitative Trait Loci , Triticum/genetics , Triticum/metabolism , Chromosome Mapping , Droughts , Genetic Variation , Genome, Plant , Linear Models , Models, Genetic , Plant Leaves/genetics , Quantitative Trait, Heritable
7.
Theor Appl Genet ; 127(6): 1409-21, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24748126

ABSTRACT

KEY MESSAGE: A whole genome average interval mapping approach identified eight QTL associated with P. thornei resistance in a DH population from a cross between the synthetic-derived wheat Sokoll and cultivar Krichauff. Pratylenchus thornei are migratory nematodes that feed and reproduce within the wheat root cortex, causing cell death (lesions) resulting in severe yield reductions globally. Genotypic selection using molecular markers closely linked to Pratylenchus resistance genes will accelerate the development of new resistant cultivars by reducing the need for laborious and expensive resistance phenotyping. A doubled haploid wheat population (150 lines) from a cross between the synthetic-derived cultivar Sokoll (P. thornei resistant) and cultivar Krichauff (P. thornei moderately susceptible) was used to identify quantitative trait loci (QTL) associated with P. thornei resistance. The resistance identified in the glasshouse was validated in a field trial. A genetic map was constructed using Diversity Array Technology and the QTL regions identified were further targeted with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. Six significant and two suggestive P. thornei resistance QTL were detected using a whole genome average interval mapping approach. Three QTL were identified on chromosome 2B, two on chromosome 6D, and a single QTL on each of chromosomes 2A, 2D and 5D. The QTL on chromosomes 2BS and 6DS mapped to locations previously identified to be associated with Pratylenchus resistance. Together, the QTL on 2B (QRlnt.sk-2B.1-2B.3) and 6D (QRlnt.sk-6D.1 and 6D.2) explained 30 and 48 % of the genotypic variation, respectively. Flanking PCR-based markers based on SSRs and SNPs were developed for the major QTL on 2B and 6D and provide a cost-effective high-throughput tool for marker-assisted breeding of wheat with improved P. thornei resistance.


Subject(s)
Disease Resistance/genetics , Host-Parasite Interactions/genetics , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping , Genome, Plant , Phenotype , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/parasitology , Polyploidy
8.
Plant Physiol ; 162(3): 1266-81, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23660834

ABSTRACT

Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205 metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had been assessed in the same field experiment were used. A linear mixed model was used to partition and account for nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the identification of candidate genes involved in drought-related responses in bread wheat.


Subject(s)
Metabolic Networks and Pathways/genetics , Quantitative Trait Loci , Triticum/genetics , Bread , Chromosome Mapping , Droughts , Genome, Plant , Linear Models , Models, Genetic , Plant Leaves/genetics , Quantitative Trait, Heritable
9.
Genet Res (Camb) ; 94(6): 291-306, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23374240

ABSTRACT

Mapping of quantitative trait loci (QTLs) underlying variation in quantitative traits continues to be a powerful tool in genetic study of plants and other organisms. Whole genome average interval mapping (WGAIM), a mixed model QTL mapping approach using all intervals or markers simultaneously, has been demonstrated to outperform composite interval mapping, a common approach for QTL analysis. However, the advent of high-throughput high-dimensional marker platforms provides a challenge. To overcome this, a dimension reduction technique is proposed for WGAIM for efficient analysis of a large number of markers. This approach results in reduced computing time as it is dependent on the number of genetic lines (or individuals) rather than the number of intervals (or markers). The approach allows for the full set of potential QTL effects to be recovered. A proposed random effects version of WGAIM aims to reduce bias in the estimated size of QTL effects. Lastly, the two-stage outlier procedure used in WGAIM is replaced by a single stage approach to reduce possible bias in the selection of putative QTL in both WGAIM and the random effects version. Simulation is used to demonstrate the efficiency of the dimension reduction approach as well as demonstrate that while the approaches are very similar, the random WGAIM performs better than the original and modified fixed WGAIM by reducing bias and in terms of mean square error of prediction of estimated QTL effects. Finally, an analysis of a doubled haploid population is used to illustrate the three approaches.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Quantitative Trait Loci/genetics , Models, Genetic , Quantitative Trait, Heritable , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...