Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 9(3): 5438-46, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23022545

ABSTRACT

Stimuli-responsive hydrogels have enormous potential in drug delivery applications. They can be used for site-specific drug delivery due to environmental variables in the body such as pH and temperature. In this study, we have developed pH-responsive microgels for the delivery of doxorubicin (DOX) in order to optimize its anti-tumor activity while minimizing its systemic toxicity. We used a copolymer of oligo(polyethylene glycol) fumarate (OPF) and sodium methacrylate (SMA) to fabricate the pH-responsive microgels. We demonstrated that the microgels were negatively charged, and the amounts of charge on the microgels were correlated with the SMA concentration in their formulation. The resulting microgels exhibited sensitivity to the pH and ionic strength of the surrounding environment. We demonstrated that DOX was efficiently loaded into the microgels and released in a controlled fashion via an ion-exchange mechanism. Our data revealed that the DOX release was influenced by the pH and ionic strength of the solution. Moreover, we designed a phenomenological mathematical model, based on a stretched exponential function, to quantitatively analyze the cumulative release of DOX. We found a linear correlation between the maximum release of DOX calculated from the model and the SMA concentration in the microgel formulation. The anti-tumor activity of the released DOX was assessed using a human chordoma cell line. Our data revealed that OPF-SMA microgels prolonged the cell killing effect of DOX.


Subject(s)
Doxorubicin/chemistry , Gels/chemistry , Microspheres , Adsorption , Cell Death/drug effects , Chemistry, Pharmaceutical , Delayed-Action Preparations , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Freeze Drying , Fumarates/chemistry , Humans , Hydrogen-Ion Concentration , Methacrylates/chemistry , Microscopy, Confocal , Microscopy, Electron, Scanning , Models, Chemical , Polyethylene Glycols/chemistry , Solutions , Time Factors
2.
Biol Sex Differ ; 2: 11, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22060014

ABSTRACT

BACKGROUND: Chromosomal complement, including that provided by the sex chromosomes, influences expression of proteins and molecular signaling in every cell. However, less than 50% of the scientific studies published in 2009 using experimental animals reported sex as a biological variable. Because every cell has a sex, we conducted a literature review to determine the extent to which sex is reported as a variable in cardiovascular studies on cultured cells. METHODS: Articles from 10 cardiovascular journals with high impact factors (Circulation, J Am Coll Cardiol, Eur Heart J, Circ Res, Arterioscler Thromb Vasc Biol, Cardiovasc Res, J Mol Cell Cardiol, Am J Physiol Heart Circ Physiol, J Heart Lung Transplant and J Cardiovasc Pharmacol) and published in 2010 were searched using terms 'cultured' and 'cells' in any order to determine if the sex of those cells was reported. Studies using established cell lines were excluded. RESULTS: Using two separate search strategies, we found that only 25 of 90 articles (28%) and 20 of 101 articles (19.8%) reported the sex of cells. Of those reporting the sex of cells, most (68.9%; n = 31) used only male cells and none used exclusively female cells. In studies reporting the sex of cells of cardiovascular origin, 40% used vascular smooth-muscle cells, and 30% used stem/progenitor cells. In studies using cells of human origin, 35% did not report the sex of those cells. None of the studies using neonatal cardiac myocytes reported the sex of those cells. CONCLUSIONS: The complement of sex chromosomes in cells studied in culture has the potential to affect expression of proteins and 'mechanistic' signaling pathways. Therefore, consistent with scientific excellence, editorial policies should require reporting sex of cells used in in vitro experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...