Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 141(20): 8277-8288, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31038938

ABSTRACT

Formation of functional monolayers on surfaces of carbon materials is inherently difficult because of the high bond strength of carbon and because common pathways such as SN2 mechanisms cannot take place at surfaces of solid materials. Here, we show that the radical initiators can selectively abstract H atoms from H-terminated carbon surfaces, initiating regioselective grafting of terminal alkenes to surfaces of diamond, glassy carbon, and polymeric carbon dots. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) demonstrate formation of self-terminating organic monolayers linked via the terminal C atom of 1-alkenes. Density functional theory (DFT) calculations suggest that this selectivity is at least partially thermodynamic in origin, as significantly less energy is needed to abstract H atoms from carbon surfaces as compared to typical aliphatic compounds. The regioselectivity favoring binding to the terminal C atom of the reactant alkenes arises from steric hindrance encountered in bond formation at the adjacent carbon atom. Our results demonstrate that carbon surface radical chemistry yields a versatile, selective, and scalable approach to monolayer formation on H-terminated carbon surfaces and provide mechanistic insights into the surface selectivity and regioselectivity of molecular grafting.


Subject(s)
Alkenes/chemistry , Free Radicals/chemistry , Nanodiamonds/chemistry , Quantum Dots/chemistry , Benzoyl Peroxide/chemistry , Density Functional Theory , Magnetic Resonance Spectroscopy , Models, Chemical , Photoelectron Spectroscopy , Surface Properties , Thermodynamics
2.
Biophys J ; 115(9): 1666-1672, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30415654

ABSTRACT

Biomineralization processes govern the formation of hierarchical hard tissues such as bone and teeth in living organisms, and mimicking these processes could lead to the design of new materials with specialized properties. However, such advances require structural characterization of the proteins guiding biomineral formation to understand and mimic their impact. In their "active" form, biomineralization proteins are bound to a solid surface, severely limiting our ability to use many conventional structure characterization techniques. Here, solid-state NMR spectroscopy was applied to study the intermolecular interactions of amelogenin, the most abundant protein present during the early stages of enamel formation, in self-assembled oligomers bound to hydroxyapatite. Intermolecular dipolar couplings were identified that support amelogenin dimer formation stabilized by residues toward the C-termini. These dipolar interactions were corroborated by molecular dynamics simulations. A ß-sheet structure was identified in multiple regions of the protein, which is otherwise intrinsically disordered in the absence of hydroxyapatite. To our knowledge, this is the first intermolecular protein-protein interaction reported for a biomineralization protein, representing an advancement in understanding enamel development and a new general strategy toward investigating biomineralization proteins.


Subject(s)
Amelogenin/chemistry , Amelogenin/metabolism , Durapatite/metabolism , Amino Acid Sequence , Animals , Magnetic Resonance Spectroscopy , Mice , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
3.
J Appl Toxicol ; 37(8): 922-932, 2017 08.
Article in English | MEDLINE | ID: mdl-28138971

ABSTRACT

Establishing science-based driving per se blood Δ9 -tetrahydrocannabinol (THC) limits is challenging, in part because of prolonged THC detection in chronic, frequent users. Therefore, documenting observable signs of impairment is important for driving under the influence of drugs. We evaluated frequent and occasional cannabis smokers' performance on the modified Romberg balance, one leg stand (OLS), and walk and turn (WAT) tasks, and pupil size effects following controlled placebo (0.001% THC), smoked, vaporized and oral (6.9% [~50.4 mg] THC) cannabis administration. Significant effects following inhaled doses were not observed due to delayed tasks administration 1.5 and 3.5 h post-dose, but significant impairment was observed after oral dosing (blood THC concentrations peaked 1.5-3.5 h post-dose). Occasional smokers' odds of exhibiting ≥2 clues on the OLS or WAT following oral dosing were 6.4 (95% CI 2.3-18.4) times higher than after placebo, with THC and 11-hydroxy-THC blood concentrations individually producing odds ratios of 1.3 (1.1-1.5) and 1.5 (1.3-1.8) for impairment in these tasks, respectively. Pupil sizes after oral dosing under the direct lighting condition were significantly larger than after placebo by mean (SE, 95% CI) 0.4 (0.1, 0.2-0.6) mm at 1.5 h and 0.5 (0.2, 0.2-0.8) mm at 3.5 h among all participants. Oral cannabis administration impaired occasional cannabis users' performance on the OLS and WAT tasks compared to placebo, supporting other reports showing these tasks are sensitive to cannabis-related impairment. Occasional smokers' impairment was related to blood THC and 11-hydroxy-THC concentrations. These are important public health policy findings as consumption of edible cannabis products increases. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Attention/drug effects , Cannabis/adverse effects , Marijuana Smoking/adverse effects , Psychomotor Performance/drug effects , Pupil/drug effects , Substance Abuse Detection/methods , Administration, Oral , Adolescent , Adult , Double-Blind Method , Humans , Inhalation Exposure , Marijuana Smoking/psychology , Middle Aged , Task Performance and Analysis , Volatilization , Walking , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL