Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Cancer Ther ; 21(6): 914-924, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35313332

ABSTRACT

Stimulator of interferon genes (STING) is an innate immune receptor activated by natural or synthetic agonists to elicit antitumoral immune response via type I IFNs and other inflammatory cytokines. Bacillus Calmette-Guerin (BCG) is the standard of care as intravesical therapy for patients with high-risk non-muscle invasive bladder cancer (NMIBC). There are limited options available for patients with NMIBC who developed BCG unresponsiveness. In this study, we characterized in vitro and in vivo antitumor effects of E7766, a macrocyle-bridged STING agonist, via intravesical instillation in two syngeneic orthotopic murine NMIBC tumor models resistant to therapeutic doses of BCG and anti-PD-1 agents. E7766 bound to recombinant STING protein with a Kd value of 40 nmol/L and induced IFNß expression in primary human peripheral blood mononuclear cells harboring any of seven major STING genotypes with EC50 values of 0.15 to 0.79 µmol/L. Intravesical E7766 was efficacious in both NMIBC models with induction of effective immunologic memory in the treated animals. Pharmacologic activation of the STING pathway in the bladder resulted in IFN pathway activation, infiltration of T cells and natural killer (NK) cells, dendritic cell activation, and antigen presentation in bladder epithelium, leading to the antitumor activity and immunity. In addition, measurements of the pharmacodynamic markers, Ifnß1 and CXCL10, in bladder, urine, and plasma, and of STING pathway intactness in cancer cells, supported this mode of action. Taken together, our studies reveal an antitumor immune effect of pharmacologic activation of the STING pathway in bladder epithelium and thus provide a rationale for subsequent clinical studies in patients with NMIBC.


Subject(s)
Phosphatidylinositol 3-Kinases , Urinary Bladder Neoplasms , Animals , BCG Vaccine/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Leukocytes, Mononuclear/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
3.
Cancer Biol Ther ; 16(4): 589-601, 2015.
Article in English | MEDLINE | ID: mdl-25729885

ABSTRACT

Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment.


Subject(s)
Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Stilbenes/pharmacology , TOR Serine-Threonine Kinases/metabolism , trans-Golgi Network/drug effects , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphoma, B-Cell/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism
4.
J Comp Neurol ; 523(13): 1913-24, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25753355

ABSTRACT

Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.


Subject(s)
Brain/cytology , Dendritic Spines/metabolism , Gene Expression Regulation/genetics , Neurons/cytology , Protein Serine-Threonine Kinases/metabolism , Animals , Brain/metabolism , Choline O-Acetyltransferase/metabolism , Dendritic Spines/genetics , Dendritic Spines/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Immunoelectron , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/ultrastructure , Vesicular Glutamate Transport Protein 1/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Vasc Cell ; 6(1): 3, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24581301

ABSTRACT

BACKGROUND: Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a tubulin-binding drug and approved in many countries worldwide for treatment of certain patients with advanced breast cancer. Here we investigated antiproliferative and antiangiogenic effects of eribulin on vascular cells, human umbilical vein endothelial cells (HUVECs) and human brain vascular pericytes (HBVPs), in vitro in comparison with another tubulin-binding drug, paclitaxel. METHODS: HUVECs and HBVPs were treated with either eribulin or paclitaxel and their antiproliferative effects were evaluated. Global gene expression profiling changes caused by drug treatments were studied using Affymetrix microarray platform and custom TaqMan Low Density Cards. To examine effects of the drugs on pericyte-driven in vitro angiogenesis, we compared lengths of capillary networks in co-cultures of HUVECs with HBVPs. RESULTS: Both eribulin and paclitaxel showed potent activities in in vitro proliferation of HUVECs and HBVPs, with the half-maximal inhibitory concentrations (IC50) in low- to sub-nmol/L concentrations. When gene expression changes were assessed in HUVECs, the majority of affected genes overlapped for both treatments (59%), while in HBVPs, altered gene signatures were drug-dependent and the overlap was limited to just 12%. In HBVPs, eribulin selectively affected 11 pathways (p < 0.01) such as Cell Cycle Control of Chromosomal Replication. In contrast, paclitaxel was tended to regulate 27 pathways such as PI3K/AKT. Only 5 pathways were commonly affected by both treatments. In in vitro pericyte-driven angiogenesis model, paclitaxel showed limited activity while eribulin shortened the formed capillary networks of HUVECs driven by HBVPs at low nmol/L concentrations starting at day 3 after treatments. CONCLUSIONS: Our findings suggest that pericytes, but not endothelial cells, responded differently, to two mechanistically-distinct tubulin-binding drugs, eribulin and paclitaxel. While eribulin and paclitaxel induced similar changes in gene expression in endothelial cells, in pericytes their altered gene expression was unique and drug-specific. In the functional endothelial-pericyte co-culture assay, eribulin, but not paclitaxel showed strong efficacy not only as a cytotoxic drug but also as a potent antivascular agent that affected pericyte-driven in vitro angiogenesis.

6.
Mol Cell Neurosci ; 42(4): 438-47, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19796684

ABSTRACT

In rodents, the orphan G protein-coupled receptor, Gpr88, is highly expressed in brain regions implicated in the pathophysiology of and is modulated by treatments for schizophrenia. We compared striatal function of Gpr88 knockout mice (Gpr88KOs) to wild-type mice using molecular, neurochemical and behavioral tests. Gpr88KOs lacked expression of Gpr88 in striatum, nucleus accumbens and layer IV of cortex. Gpr88KOs had normal striatal dopamine D2 receptor density and affinity and DARPP-32 expression but Gpr88KOs had higher basal striatal phosphorylated DARPP-32 Thr-34. In vivo microdialysis detected lower basal dopamine in Gpr88KOs while amphetamine-induced dopamine release was normal. Behaviorally, Gpr88KOs demonstrated disrupted prepulse inhibition of startle (PPI) and increased sensitivity to apomorphine-induced climbing and stereotypy (AICS) and amphetamine-stimulated locomotor activity. Antipsychotic administration to Gpr88KOs normalized the PPI deficit and blocked AICS. The modulatory role of Gpr88 in striatal dopamine function suggests it may be a new target for treatments for psychiatric disorders.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antipsychotic Agents/pharmacology , Apomorphine , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/anatomy & histology , Brain/metabolism , Corpus Striatum/cytology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , Haloperidol/pharmacology , Humans , Male , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Neuropsychological Tests , Receptors, Dopamine D2/metabolism , Receptors, G-Protein-Coupled/genetics , Reflex, Startle/drug effects , Reflex, Startle/physiology , Risperidone/pharmacology
7.
Brain Res ; 1087(1): 1-14, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16647048

ABSTRACT

This report describes the identification and characterization of the murine orphan GPCR, Gpr101. Both human and murine genes were localized to chromosome X. Similar to its human ortholog, murine Gpr101 mRNA was detected predominantly in the brain within discrete nuclei. A knowledge-restricted hidden Markov model-based algorithm, capable of accurately predicting G-protein coupling selectivity, indicated that both human and murine GPR101 were likely coupled to Gs. This prediction was supported by the elevation of cyclic AMP levels and the activation of a cyclic AMP response element-luciferase reporter gene in HEK293 cells over-expressing human GPR101. Consistent with this, over-expression of human GPR101 in a yeast-based system yielded an elevated, agonist-independent reporter gene response in the presence of a yeast chimeric Galphas protein. These results indicate that GPR101 participates in a potentially wide range of activities in the CNS via modulation of cAMP levels.


Subject(s)
GTP-Binding Proteins/physiology , Gene Expression/physiology , Nerve Tissue Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Blotting, Northern/methods , Brain/metabolism , Cell Line , Chromosome Mapping/methods , Cloning, Molecular/methods , Cyclic AMP/metabolism , Gene Library , Genes, Reporter/physiology , Genetic Testing/methods , Humans , In Situ Hybridization/methods , Mice , Models, Biological , Molecular Sequence Data , Transfection/methods , Two-Hybrid System Techniques
8.
Brain Res Mol Brain Res ; 133(2): 187-97, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15710235

ABSTRACT

Members of the MRG family of G-protein coupled receptors (GPCRs) are expressed predominately in small diameter sensory neurons of the dorsal root ganglia (DRG) suggesting a possible role in nociception. However, the large expansion of this gene family in rodents, combined with the lack of strict rodent orthologs for many of the human MRG genes, limits the usefulness of rodent models to evaluate human MRG involvement in nociception. Furthermore, the high degree of similarity between related rodent Mrg genes suggests that pharmacological approaches to define the function of individual receptors will prove difficult. The creation of an animal model to examine human MRG function will, therefore, require the identification of human MRG orthologs in a non-rodent species. Here we report the identification of MRGD, MRGE, and several MRGX orthologs in the crab-eating macaque, Macaca fascicularis. Similar to their human counterparts, all isolated macaque genes were expressed in dorsal root ganglia neurons. In the case of macaque MrgX2 and MrgD, expression was co-localized with the known nociceptive neuronal markers, IB4, VR1, and SP. Although expression in DRG neurons was the prominent feature of this family, we also found that MrgE was expressed in numerous brain regions of macaque, mouse, and human.


Subject(s)
Gene Expression/physiology , Neurons/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Blotting, Northern/methods , Blotting, Southern/methods , Brain/anatomy & histology , Brain/metabolism , Cloning, Molecular/methods , DNA, Complementary/metabolism , Ganglia, Spinal/cytology , Gene Expression Regulation/physiology , Glycoproteins/metabolism , Humans , Immunohistochemistry/methods , In Situ Hybridization/methods , Macaca fascicularis , Mice , Molecular Sequence Data , Multigene Family/genetics , RNA, Messenger/biosynthesis , Receptors, Drug/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Alignment , Species Specificity , Substance P/metabolism , Transcription Factors/classification
9.
Brain Res Mol Brain Res ; 109(1-2): 18-33, 2002 Dec 30.
Article in English | MEDLINE | ID: mdl-12531512

ABSTRACT

We report here the isolation of a novel gene termed mGluR5R (mGluR5-related). The N-terminus of mGluR5R is highly similar to the extracellular domain of metabotropic glutamate receptor 5 (mGluR5) whereas the C-terminus bears similarity to the testis-specific gene, RNF18. mGluR5R is expressed in the human CNS in a coordinate fashion with mGluR5. Although the sequence suggests that mGluR5R may be a secreted glutamate binding protein, we found that when expressed in HEK293 cells it was membrane associated and not secreted. Furthermore, mGluR5R was incapable of binding the metabotropic glutamate receptor class I selective agonist, quisqualate. Although mGluR5R could not form disulfide-mediated covalent homodimers, it was able to form a homomeric complex, presumably through noncovalent interactions. mGluR5R also formed noncovalent heteromeric associations with an engineered construct of the extracellular domain of mGluR5 as well as with full-length mGluR5 and mGluR1alpha. The ability of mGluR5R to associate with mGluR1alpha and mGluR5 suggests that it may be a modulator of class I metabotropic glutamate receptor function.


Subject(s)
Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Amino Acid Sequence , Carrier Proteins/genetics , Cell Fractionation , Cell Line , Central Nervous System/metabolism , Culture Media, Conditioned , Excitatory Amino Acid Agonists/metabolism , Humans , Macromolecular Substances , Molecular Sequence Data , Protein Binding , Quisqualic Acid/metabolism , Receptor, Metabotropic Glutamate 5 , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...