Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2307425121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38271339

ABSTRACT

We present evidence of a strong circular photon drag effect (PDE) in topological insulators (TIs) through the observation of helicity-dependent topological photocurrents with threefold rotational symmetry using THz spectroscopy in epitaxially-grown Bi2Se3 with reduced crystallographic twinning. We establish how twinned domains introduce competing nonlinear optical (NLO) responses inherent to the crystal structure that obscure geometry-sensitive optical processes through the introduction of a spurious mirror symmetry. Minimizing the twinning defect reveals strong NLO response currents whose magnitude and direction depend on the alignment of the excitation to the crystal axes and follow the threefold rotational symmetry of the crystal. Notably, photocurrents arising from helical light reverse direction for left/right circular polarizations and maintain a strong azimuthal dependence-a result uniquely attributable to the circular PDE, where the photon momentum acts as an applied in-plane field stationary in the laboratory frame. Our results demonstrate new levels of control over the magnitude and direction of photocurrents in TIs and that the study of single-domain films is crucial to reveal hidden phenomena that couple topological order and crystal symmetries.

2.
Nat Commun ; 14(1): 3222, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270579

ABSTRACT

Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.

3.
ACS Nano ; 16(11): 19346-19353, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36260344

ABSTRACT

While heterostructures are ubiquitous tools enabling new physics and device functionalities, the palette of available materials has never been richer. Combinations of two emerging material classes, two-dimensional materials and topological materials, are particularly promising because of the wide range of possible permutations that are easily accessible. Individually, both graphene and Pb1-xSnxTe (PST) are widely investigated for spintronic applications because graphene's high carrier mobility and PST's topologically protected surface states are attractive platforms for spin transport. Here, we combine monolayer graphene with PST and demonstrate a hybrid system with properties enhanced relative to the constituent parts. Using magnetotransport measurements, we find carrier mobilities up to 20 000 cm2/(V s) and a magnetoresistance approaching 100%, greater than either material prior to stacking. We also establish that there are two distinct transport channels and determine a lower bound on the spin relaxation time of 4.5 ps. The results can be explained using the polar catastrophe model, whereby a high mobility interface state results from a reconfiguration of charge due to a polar/nonpolar interface interaction. Our results suggest that proximity induced interface states with hybrid properties can be added to the still growing list of behaviors in these materials.

4.
Sci Rep ; 10(1): 4845, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32179866

ABSTRACT

Topological materials, such as the quintessential topological insulators in the Bi2X3 family (X = O, S, Se, Te), are extremely promising for beyond Moore's Law computing applications where alternative state variables and energy efficiency are prized. It is essential to understand how the topological nature of these materials changes with growth conditions and, more specifically, chalcogen content. In this study, we investigate the evolution of the magnetoresistance of Bi2TexSe3-x for varying chalcogen ratios and constant growth conditions as a function of both temperature and angle of applied field. The contribution of 2D and 3D weak antilocalization are investigated by utilizing the Tkachov-Hankiewicz model and Hakami-Larkin-Nagaoka models of magnetoconductance.

SELECTION OF CITATIONS
SEARCH DETAIL
...