Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Am Soc Mass Spectrom ; 17(10): 1413-1427, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16876428

ABSTRACT

A long known way of anchoring isotope ratio values to the SI system is by means of gravimetrically prepared isotopic mixtures. Thermal ionization mass spectrometry (TIMS) is the traditionally associated measurement technique, but multi-collector double focusing inductively coupled plasma (MC-ICP)-MS now appears to be an attractive alternative. This absolute calibration strategy necessitates that mass discrimination effects remain invariant in time and across the range of isotope ratios measured. It is not the case with MC-ICPMS and the present work illustrates, in the case of Zn isotopic measurements carried out using locally produced synthetic Zn isotope mixtures (IRMM-007 series), how this calibration strategy must be adjusted. First, variation in mass discrimination effects across the measurement sequence is propagated as an uncertainty component. Second, linear proportionality during each individual measurement between normalized mass discrimination and the average mass of the isotope ratios is used to evaluate mass discrimination for the ratios involving low abundance isotopes. Third, linear proportionality between mass discrimination and the logarithm of the isotope ratio values for n(67Zn)/n(64Zn) and n(68Zn)/n(64Zn) in the mixtures is used iteratively to evaluate mass discrimination for the same ratios in the isotopically enriched materials. Fourth, ratios in natural-like materials (including IRMM-3702 and IRMM-651) are calibrated by external bracketing using the isotopic mixtures. The relative expanded uncertainty (k = 2) estimated for n(68Zn)/n(64Zn) and n(67Zn)/n(64Zn) ratio values in the synthetic isotopic mixtures and the natural-like zinc samples was in the range of 0.034 to 0.048%. The uncertainty on the weighing (0.01%, k = 1) was the largest contributor to these budgets. The agreement between these results and those obtained with a single detector TIMS and with another MC-ICPMS further validated this work. The absolute isotope ratio values found for IRMM-3702-material also proposed as "delta 0" for delta-scale isotopic measurements-are n(66Zn)/n(64Zn) = 0.56397 (30), n(67Zn)/n(64Zn) = 0.082166 (35), n(68Zn)/n(64Zn) = 0.37519 (16), and n(70Zn)/n(64Zn) = 0.012418 (23). The derived Zn atomic weight value Ar(Zn) = 65.37777 (22) differs significantly from the current IUPAC value by Chang et al. [1]. Remeasurement, with isotopic mixtures from the IRMM-007 series, of the Zn isotope ratios in the same Chang et al. [1] material have revealed large systematic differences (1.35 (27)% per atomic mass unit) that suggest unrecognized measurement biases in their results.


Subject(s)
Zinc Compounds/chemistry , Calibration , Mass Spectrometry , Reproducibility of Results , Zinc Isotopes/chemistry
3.
Environ Sci Technol ; 38(2): 581-6, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14750735

ABSTRACT

Increased interest in measuring uranium isotope ratios in environmental samples (biological materials, soils, dust particles, water) has come from the necessity to assess the health impact of the use of depleted uranium (DU) based ammunitions during recent military conflicts (e.g., Gulf war, Kosovo) and from the need to identify nondeclared nuclear activities (nuclear safeguards). In this context, very important decisions can arise which have to be based on measurement data of nondisputable uncertainty. The present study describes the certification to 2.5% (k = 2) relative combined uncertainty of n(235U)/n(238U) at ultralow uranium levels (approximately 5-20 pg g(-1)) in human urine samples. After sample decomposition and matrix separation, the isotope ratios were measured by means of a single-detector magnetic sector-field inductively coupled plasma mass spectrometry instrument fitted with an ultrasonic nebulizer. Correction for mass discrimination effects was obtained by means of the certified isotopic reference material IRMM-184. The analytical procedure developed was validated in three complementary ways. First, all major sources of uncertainty were identified and propagated together following the ISO/GUM guidelines. Second, this quality was controlled with a matrix matching NUSIMEP-3 sample (approximately 0.06-0.7% difference from certified). Third, the instrumental part of the procedure was proven to be reproducible from the confirmation of the results obtained for three samples remeasured 7 months later (approximately 1.5% difference). The results obtained for 33 individuals indicated that none seemed to have been exposed to contamination by DU.


Subject(s)
Radioactive Pollutants/urine , Uranium/urine , Humans , Isotopes/analysis , Mass Spectrometry/methods , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity
4.
Anal Bioanal Chem ; 378(2): 330-41, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14574432

ABSTRACT

Vector models which progressively lead to a general model for isotope dilution mass spectrometry (IDMS) are presented for the case of two 'monitor isotopes' and one blend involved. They enable one to find the boundary conditions for performing IDMS, and cover the cases of highly enriched isotopes, radioactive isotopes and ratios that are given with different denominator. The models identify the key measurements in their simplest form as well as the conditions which minimise the measurement effort and in some cases the propagated measurement uncertainties. The equations are discussed and compared with other published IDMS equations. Combined with discussion on fundamental aspects of IDMS, this results in an even more 'general' but also more complex IDMS equation.

5.
Anal Chem ; 74(13): 3199-205, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12141683

ABSTRACT

The feasibility of performing SI-traceable carbon isotope amount ratio measurements following conversion of carbon into CF4 was studied. A procedure for the direct fluorination of carbon with elemental fluorine was developed, and the conversion step was checked for losses, blank contributions, and the absence of systematic isotope effects. Gas chromatography was used to identify and quantify the gaseous fluorination products and to isolate CF4 from byproducts. After fluorination of graphite carbon, CF4 and perfluoroalkanes with up to six carbon atoms were observed as reaction products. Within an uncertainty of 10%, the graphite carbon was fully recovered in the gaseous carbon fluorides, with the main product being CF4 (80-90%) and C2F6 as the major byproduct. The fluorination and GC procedures were found to introduce an alteration not bigger than 0.03 +/- 0.04/1000 on the isotopic composition of CF4. Carbon blank contributions introduced during the fluorination procedure were below 0.5% relative to a typical sample of 4 mg of carbon. For two of the materials investigated, the carbon isotope ratios measured on a differential mass spectrometer were reproducible within a standard deviation of approximately 0.1/1000 for several individual fluorinations. For these materials, the developed fluorination procedure is a straightforward process, which can be used as a foundation to establish SI-traceable measurements of carbon isotope amount ratios. However, for the third graphite material the formation of byproducts (C2F6-C6F14) was found to induce significant isotopic fractionation.

6.
Clin Chem Lab Med ; 40(4): 391-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12059081

ABSTRACT

We studied the uncertainty of measurement for the calcium and glucose (amount of) substance concentrations in serum. The evaluation follows a four-step procedure, which complies with the ISO document Guide to the Expression of Uncertainty in Measurement (GUM). The applications were chosen to represent commonly used measuring systems in medical laboratories. The uncertainty components are quantified using observations of the measuring system, and information from calibration certificates, instrument specifications and literature. The evaluation focuses on the measurement step but empirical terms are used to illustrate how the pre-analytical phase and patient-related issues can be accounted for. The software GUM Workbench was used to facilitate calculations and to visualize the importance of each uncertainty component. The combined standard uncertainties (u(c)) for the measurands were < or =2% including the pre-analytical uncertainty sources. The patient-related source is discussed in relation to clinician's diagnosis and decision-making. The evaluation, as carried out here for calcium and glucose substance concentration measurements, can easily be applied to many other measurands in clinical chemistry. This work emphasizes that the internal quality control can provide much of the information needed in the uncertainty evaluation, and that external quality assessment (EQA) schemes are important in the control of the uncertainty evaluated by the individual laboratories. Due to statistical and metrological limitations routine EQA schemes should themselves not be used as a means of uncertainty evaluation.


Subject(s)
Blood Glucose/analysis , Calcium/blood , Chemistry, Clinical/standards , Bias , Blood Chemical Analysis/standards , Clinical Laboratory Techniques/standards , Humans , Quality Control , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...