Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 72(8): 849-875, 2022 08.
Article in English | MEDLINE | ID: mdl-35363604

ABSTRACT

This paper reports the design and qualification of the first purpose-built, bench-scale reactor system to model the municipal waste-to-energy combustion of fluorinated polymers. Using the principle of similarity, the gas-phase combustion zone of a typical municipal waste-to-energy plant has been scaled down to the bench with a focus on chemical similarity. Chemical similarity is achieved in large part through the use of methanol as a surrogate for municipal solid waste (MSW). Review of prior research shows that methanol is one of the major volatile products expected during MSW thermal conversion in the fuel bed of waste-to-energy plants. Like full-scale waste-energy plants, the design of the bench-scale model includes a flame zone and a post-flame zone. Maintaining steady methanol vapor flow premixed with air to the model reactor system ensures stable combustion resulting in bench-scale CO emission levels comparable to those of full-scale waste-to-energy plants. Since investigation of fluorinated polymer combustion includes trace analysis of exhaust gas for perfluorooctanoic acid (PFOA), qualification testing focused on PFOA collection efficiency. High PFOA collection efficiency (>90%) demonstrated the capability of the reactor system in transporting and absorbing PFOA that may be generated during high-temperature combustion testing of fluorinated polymers. Overall, the bench-scale system is qualified for its intended use to investigate potential generation of PFOA from combustion of fluorinated polymers under conditions representative of waste-to-energy combustion.Implications: Decision-makers depend on environmental researchers to provide reliable predictions of pollutant emissions from waste combustion of polymers at end of product life. Reliable predictions are especially important with regard to questions about potential PFOA emissions from municipal waste combustion of fluorinated polymers. Results from qualification testing confirm that the novel bench-scale model reactor system is capable of representing gas-phase municipal waste combustion behavior upstream of air pollution control and generating representative exhaust gas samples for off-line trace-level analysis of PFOA.


Subject(s)
Incineration , Methanol , Fluorocarbon Polymers , Gases/analysis , Incineration/methods , Solid Waste/analysis
2.
Waste Manag ; 132: 124-132, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329926

ABSTRACT

This paper reports the first known comprehensive survey of combustion operating conditions across the wide range of municipal waste-to-energy facilities in the U.S. The survey was conducted in a step-wise fashion. Once the population of 188 units operating at over 70 facilities was defined, this population was stratified by distinguishing characteristics of combustion technology. Stratum-level estimates for operating conditions were determined from data collected in the survey. These stratum-level values were weighted by corresponding design capacity share and combined to infer national-level operating parameter estimates representative of the overall population. Survey results show that typical municipal waste-to-energy combustion operating conditions in the U.S. are (1) furnace temperature above 1160 °C, (2) gas residence time above 2.4 s, (3) exit gas concentrations of nearly 10% for oxygen (dry basis), and (4) over 16% for moisture. These operating parameter values can serve as benchmarks for laboratory-scale studies representative of municipal waste-to-energy combustion as typically practiced in the U.S.


Subject(s)
Incineration , Refuse Disposal , Oxygen , Solid Waste/analysis , Temperature
3.
J Phys Chem A ; 110(10): 3559-66, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16526636

ABSTRACT

Using a refined pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique, the kinetics of the reaction of a surrogate three-ring polynuclear aromatic hydrocarbons (PAH), anthracene (and its deuterated form), with hydroxyl (OH) radicals was investigated over the temperature range of 373 to 1200 K. This study represents the first examination of the OH kinetics for this class of reactions at elevated temperatures (>470 K). The results indicate a complex temperature dependence similar to that observed for simpler aromatic compounds, e.g., benzene. At low temperatures (373-498 K), the rate measurements exhibited Arrhenius behavior (k = 1.82 x 10(-11) exp(542.35/T) in units of cm3 molecule(-1) s(-1)), and the kinetic isotope effect (KIE) measurements were consistent with an OH-addition mechanism. The low-temperature results are extrapolated to atmospheric temperatures and compared with previous measurements. Rate measurements between 673 and 923 K exhibited a sharp decrease in the magnitude of the rate coefficients (a factor of 9). KIE measurements under these conditions were still consistent with an OH-addition mechanism. The following modified Arrhenius equation is the best fit to our anthracene measurements between 373 and 923 K (in units of cm3 molecule(-1) s(-1)): k(1) (373-923 K) = 8.17 x 10(14) T(-8.3) exp(-3171.71/T). For a limited temperature range between 1000 and 1200 K, the rate measurements exhibited an apparent positive temperature dependence with the following Arrhenius equation, the best fit to the data (in units of cm3 molecule(-1) s(-1)): k1 (999-1200 K) = 2.18 x 10(-11) exp(-1734.11/T). KIE measurements above 999 K were slightly larger than unity but inclusive regarding the mechanism of the reaction. Theoretical calculations of the KIE indicate the mechanism of reaction at these elevated temperatures is dominated by OH addition with H abstraction being a minor contributor.

4.
Chemosphere ; 61(7): 974-84, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16257319

ABSTRACT

This study reports the first known studies to investigate the thermal degradation of a polyester/cellulose fabric substrate ("article") treated with a fluorotelomer-based acrylic polymer under laboratory conditions conservatively representing typical combustion conditions of time, temperature, and excess air level in a municipal incinerator, with an average temperature of 1000 degrees C or greater over approximately 2s residence time. The results demonstrate that the polyester/cellulose fabric treated with a fluorotelomer-based acrylic polymer is destroyed and no detectable amount of perfluorooctanoic acid (PFOA) is formed under typical municipal incineration conditions. Therefore, textiles and paper treated with such a fluorotelomer-based acrylic polymer disposed of in municipal waste and incinerated are expected to be destroyed and not be a significant source of PFOA in the environment.


Subject(s)
Acrylic Resins , Air Pollutants/analysis , Caprylates/analysis , Fluorocarbon Polymers , Fluorocarbons/analysis , Incineration , Textiles , Cellulose , Gas Chromatography-Mass Spectrometry , Polyesters , Thermogravimetry
5.
Chemosphere ; 61(5): 685-92, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15893790

ABSTRACT

The laser photolysis/laser induced fluorescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) was been detected via LIF at 272 nm from reactions of elemental Hg with Cl atoms generated from the 193 nm photolysis of carbon tetrachloride. While the formation of HgCl was too fast to be observed on millisecond time scales, the kinetics of the consumption of HgCl have been determined at temperatures characteristic of post-combustion conditions. Rate coefficients and Arrhenius parameters for the reaction of HgCl with Cl2, HCl and Cl atoms were determined. The reaction of HgCl with Cl2 was the fastest reaction studied, while the reaction of HgCl with HCl was the only reaction to show any measurable temperature dependence. Estimates of the rate coefficient for the reaction Hg + Cl --> HgCl were determined using a modeling approach. Comparisons of these new measurements with model predictions are discussed.


Subject(s)
Air Pollutants , Chlorine/chemistry , Mercuric Chloride/chemistry , Mercury Compounds/chemistry , Mercury/chemistry , Coal , Fluorescence , Hydrochloric Acid/chemistry , Photolysis , Power Plants
6.
Chemosphere ; 58(3): 243-52, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15581927

ABSTRACT

The pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique has been applied to obtain rate coefficients for OH + dioxin (DD) (k1), OH + 2-chlorodibenzo-p-dioxin (2-CDD) (k2), OH + 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD) (k3), OH + 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) (k4), OH + 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) (k5), OH + 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) (k6), and OH + octachlorodibenzo-p-dioxin (OCDD) (k7) over an extended range of temperature. The atmospheric pressure (740 +/- 10 Torr) rate measurements are characterized by the following Arrhenius parameters (in units of cm3 molecule(-1) s(-1), error limits are 1 omega): k1(326-907 K) = (1.70+/-0.22) x 10(-12)exp(979+/-55)/T, k2(346-905 K) = (2.79+/-0.27) x 10(-12)exp(784+/-54)/T, k3(400-927 K) = 10(-12)exp(742+/-67)/T, k4(390-769 K) = (1.10+/-0.10) x 10(-12)exp(569+/-53)/T, k5(379-931 K) = (1.02+/-0.10) x 10(-12)exp(580+/-68)/T, k6(409-936 K) = (1.66+/-0.38) x 10(-12)exp(713+/-114)/T, k7(514-928 K) = (3.18+/-0.54) x 10(-12)exp(-667+/-115)/T. The overall uncertainty in the measurements, taking into account systematic errors dominated by uncertainty in the substrate reactor concentration, range from a factor of 2 for DD, 2-CDD, 2,3-DCDD, 2,7-DCDD, and 2,8-DCDD to +/- a factor of 4 for 1,2,3,4-TCDD and OCDD. Negative activation energies characteristic of an OH addition mechanism were observed for k1-k6. k7 exhibited a positive activation energy. Cl substitution was found to reduce OH reactivity, as observed in prior studies at lower temperatures. At elevated temperatures (500 K < T < 500 K), there was no experimental evidence for a change in reaction mechanism from OH addition to H abstraction. Theoretical calculations suggest that H abstraction will dominate OH reactivity for most if not all dioxins (excluding OCDD) at combustion temperatures (>1000 K). For OCDD, the dominant reaction mechanism at all temperatures is OH addition followed by Cl elimination.


Subject(s)
Dioxins/chemistry , Hydroxyl Radical/chemistry , Models, Theoretical , Oxidants/chemistry , Atmospheric Pressure , Kinetics , Photolysis , Temperature
7.
J Air Waste Manag Assoc ; 49(1): 39-48, 1999 Jan.
Article in English | MEDLINE | ID: mdl-28060610

ABSTRACT

The high-temperature thermal degradation of four alternative automotive fuels (methanol, ethanol, natural gas, and liquefied petroleum (LP) gas) have been examined as a function of fuel-oxygen equivalence ratio and exposure temperature using fused silica flow reactor instrumentation coupled to in-line GC-TCD and GC-MS detection. Organic speciation for methanol, natural gas, and LP gas were consistent with previous measurements. However, several previously undetected organic by-products were observed from ethanol oxidation and pyrolysis. Organic speciation was found to vary significantly between methanol and ethanol and less so between natural gas and LP gas. Non-methane organic gases (NMOG) and specific reactivities of the respective fuels were measured, and trends with respect to proposed reactivity adjustment factors are discussed. A qualitative comparison of NMOG quantified in the flow reactor tests with the results of recent vehicle tests is also reported. The most significant differences in the comparisons were observed for toxic compounds, including the lack of detection of acetalde-hyde, 1,3-butadiene, and benzene from flow reactor experiments of methanol degradation, and the lack of detection of 1,3-butadiene from flow reactor experiments of ethanol combustion. Possible sources for the formation of these compounds in vehicle tests are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...