Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Drug Dev ; 11(4): 467-474, 2022 04.
Article in English | MEDLINE | ID: mdl-35182042

ABSTRACT

Galidesivir (BCX4430) is an adenosine nucleoside analog broadly active in cell culture against multiple RNA virus families, and active in animal models of viral diseases associated with Ebola, Marburg, yellow fever, Zika, and Rift Valley fever. Current studies demonstrated the pharmacokinetics and safety of the first-in-human evaluations of galidesivir as intramuscular (IM) and intravenous (IV) formulations. Two double-blind, placebo-controlled, dose-ranging studies were conducted enrolling 126 healthy subjects. Study 1 evaluated the safety and tolerability of IM galidesivir over single day dosing, single day dosing ± lidocaine, and 7-day dosing with lidocaine. Study 2 evaluated the safety and tolerability of single ascending doses of IV galidesivir. Safety and tolerability were evaluated via clinical and laboratory monitoring. The plasma concentration-time profile of galidesivir at doses 0.3 to 10 mg/kg IM was characterized by rapid absorption, an initial rapid distribution and clearance phase, and an extended terminal elimination phase. The initial rapid distribution and extended terminal elimination were mimicked in the profile of galidesivir at doses 5 to 20 mg/kg IV. No fatal events or related serious adverse events were reported. No clinically significant dose-related trends in laboratory values, vital signs, electrocardiograms, or echocardiograms were noted. Galidesivir was safe and generally well tolerated.


Subject(s)
Zika Virus Infection , Zika Virus , Adenine/analogs & derivatives , Adenosine/adverse effects , Adenosine/analogs & derivatives , Animals , Antiviral Agents/adverse effects , Healthy Volunteers , Humans , Nucleosides , Pyrrolidines , Zika Virus Infection/drug therapy
2.
Antiviral Res ; 195: 105180, 2021 11.
Article in English | MEDLINE | ID: mdl-34551346

ABSTRACT

Galidesivir (BCX4430) is an adenosine nucleoside analog that is broadly active in cell culture against several RNA viruses of various families. This activity has also been shown in animal models of viral disease associated with Ebola, Marburg, yellow fever, Zika, and Rift Valley fever viruses. In many cases, the compound is more efficacious in animal models than cell culture activity would predict. Based on favorable data from in vivo animal studies, galidesivir has recently undergone evaluation in several phase I clinical trials, including against severe acute respiratory syndrome coronavirus 2, and as a medical countermeasure for the treatment of Marburg virus disease.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Pyrrolidines/pharmacology , Adenine/pharmacology , Adenosine/pharmacology , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Marburgvirus/drug effects , Nucleosides/analogs & derivatives , SARS-CoV-2/drug effects
3.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: mdl-35062212

ABSTRACT

Coronavirus disease 2019 (COVID-19) has claimed the lives of millions of people worldwide since it first emerged. The impact of the COVID-19 pandemic on public health and the global economy has highlighted the medical need for the development of broadly acting interventions against emerging viral threats. Galidesivir is a broad-spectrum antiviral compound with demonstrated in vitro and in vivo efficacy against several RNA viruses of public health concern, including those causing yellow fever, Ebola, Marburg, and Rift Valley fever. In vitro studies have shown that the antiviral activity of galidesivir also extends to coronaviruses. Herein, we describe the efficacy of galidesivir in the Syrian golden hamster model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Treatment with galidesivir reduced lung pathology in infected animals compared with untreated controls when treatment was initiated 24 h prior to infection. These results add to the evidence of the applicability of galidesivir as a potential medical intervention for a range of acute viral illnesses, including coronaviruses.


Subject(s)
Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Adenine/pharmacology , Adenine/therapeutic use , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Mesocricetus , Pyrrolidines/pharmacology , Viral Load/drug effects
4.
Sci Transl Med ; 12(547)2020 06 10.
Article in English | MEDLINE | ID: mdl-32522808

ABSTRACT

Zika virus infection in humans has been associated with serious reproductive and neurological complications. At present, no protective antiviral drug treatment is available. Here, we describe the testing and evaluation of the antiviral drug, galidesivir, against Zika virus infection in rhesus macaques. We conducted four preclinical studies in rhesus macaques to assess the safety, antiviral efficacy, and dosing strategies for galidesivir (BCX4430) against Zika virus infection. We treated 70 rhesus macaques infected by various routes with the Puerto Rico or Thai Zika virus isolates. We evaluated galidesivir administered as early as 90 min and as late as 72 hours after subcutaneous Zika virus infection and as late as 5 days after intravaginal infection. We evaluated the efficacy of a range of galidesivir doses with endpoints including Zika virus RNA in plasma, saliva, urine, and cerebrospinal fluid. Galidesivir dosing in rhesus macaques was safe and offered postexposure protection against Zika virus infection. Galidesivir exhibited favorable pharmacokinetics with no observed teratogenic effects in rats or rabbits at any dose tested. The antiviral efficacy of galidesivir observed in the blood and central nervous system of infected animals warrants continued evaluation of this compound for the treatment of flaviviral infections.


Subject(s)
Hepatitis C, Chronic , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/therapeutic use , Macaca mulatta , Rabbits , Rats , Viremia/drug therapy , Zika Virus Infection/drug therapy
5.
Antiviral Res ; 156: 38-45, 2018 08.
Article in English | MEDLINE | ID: mdl-29864447

ABSTRACT

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. There are no approved antiviral therapies or vaccines available to treat or prevent severe disease associated with RVFV infection in humans. The adenosine analog, galidesivir (BCX4430), is a broad-spectrum antiviral drug candidate with in vitro antiviral potency (EC50 of less than 50 µM) in more than 20 different viruses across eight different virus families. Here we report on the activity of galidesivir in the hamster model of peracute RVFV infection. Intramuscular and intraperitoneal treatments effectively limited systemic RVFV (strain ZH501) infection as demonstrated by significantly improved survival outcomes and the absence of infectious virus in the spleen and the majority of the serum, brain, and liver samples collected from infected animals. Our findings support the further development of galidesivir as an antiviral therapy for use in treating severe RVFV infection, and possibly other related phleboviral diseases.


Subject(s)
Antiviral Agents/administration & dosage , Purine Nucleosides/administration & dosage , Rift Valley Fever/drug therapy , Rift Valley fever virus/drug effects , Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Animals , Disease Models, Animal , Injections, Intramuscular , Injections, Intraperitoneal , Liver/virology , Mesocricetus , Pyrrolidines , Spleen/virology , Survival Analysis , Treatment Outcome
6.
Antiviral Res ; 137: 14-22, 2017 01.
Article in English | MEDLINE | ID: mdl-27838352

ABSTRACT

Zika virus (ZIKV) is currently undergoing pandemic emergence. While disease is typically subclinical, severe neurologic manifestations in fetuses and newborns after congenital infection underscore an urgent need for antiviral interventions. The adenosine analog BCX4430 has broad-spectrum activity against a wide range of RNA viruses, including potent in vivo activity against yellow fever, Marburg and Ebola viruses. We tested this compound against African and Asian lineage ZIKV in cytopathic effect inhibition and virus yield reduction assays in various cell lines. To further evaluate the efficacy in a relevant animal model, we developed a mouse model of severe ZIKV infection, which recapitulates various human disease manifestations including peripheral virus replication, conjunctivitis, encephalitis and myelitis. Time-course quantification of viral RNA accumulation demonstrated robust viral replication in several relevant tissues, including high and persistent viral loads observed in the brain and testis. The presence of viral RNA in various tissues was confirmed by an infectious culture assay as well as immunohistochemical staining of tissue sections. Treatment of ZIKV-infected mice with BCX4430 significantly improved outcome even when treatment was initiated during the peak of viremia. The demonstration of potent activity of BCX4430 against ZIKV in a lethal mouse model warrant its continued clinical development.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Purine Nucleosides/pharmacology , Purine Nucleosides/therapeutic use , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Adenine/analogs & derivatives , Adenosine/analogs & derivatives , Animals , Antiviral Agents/administration & dosage , Brain/virology , Cell Line , Disease Models, Animal , Humans , Male , Mice , Purine Nucleosides/administration & dosage , Pyrrolidines , RNA, Viral , Testis/virology , Viral Load/drug effects , Viremia , Virus Replication/drug effects , Zika Virus Infection/virology
7.
Biomaterials ; 25(12): 2363-9, 2004 May.
Article in English | MEDLINE | ID: mdl-14741601

ABSTRACT

This study was done to define the mechanical and histological properties of tissue-engineered cartilage (TEC) derived from human chondrocytes and to compare these findings with those of native cartilage. Chondrocytes were obtained from 10 human auricular cartilages and seeded onto a biodegradable template of polyglycolic acid and poly L-lactic acid. Each template was shaped into a 1 cm x 2 cm rectangle. The templates were implanted in athymic mice for 8 weeks. Eight human auricular cartilages were used for comparison. Mechanical analysis with a tensile testing device provided values of ultimate tensile strength (UTS), stiffness, and resilience. Statistical analysis was performed with the Student's t-test. Histological assessment was done with hematoxylin-eosin staining along with other special stains. The TEC had UTS of 2.07 MPa, stiffness of 3.7 MPa, and resilience of 0.37 J/m3. The control specimens had UTS of 2.18 MPa, stiffness of 5.11 MPa, and resilience of 0.42 J/m3. No statistical difference was found between the experimental and control groups for each of the three parameters. Histological analysis showed mature cartilage with characteristic collagen, glycosaminoglycans, and elastin in the TEC. The neo-cartilage showed slightly smaller size and more irregular distribution of chondrocytes and unique fibrous capsule formation with peripheral infiltration of fibrous tissue. This study showed that the mechanical qualities of TEC from human chondrocytes are similar to those of native auricular cartilage. It suggests that the engineered cartilage from human chondrocytes may have sufficient strength and durability for clinical uses. The histological findings revealed some differences with neo-cartilage.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/growth & development , Cell Culture Techniques/methods , Chondrocytes/cytology , Chondrocytes/physiology , Tissue Engineering/methods , Absorbable Implants , Cell Adhesion , Cell Division , Cell Size , Cells, Cultured , Ear, External , Elasticity , Female , Humans , Lactic Acid/chemistry , Male , Middle Aged , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...