Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Neurosci ; 103: 103463, 2020 03.
Article in English | MEDLINE | ID: mdl-31917333

ABSTRACT

Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Neuronal Outgrowth/drug effects , Neurons/drug effects , Rimonabant/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Dronabinol/metabolism , Dronabinol/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , MAP Kinase Signaling System/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism
2.
iScience ; 10: 234-244, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30557785

ABSTRACT

Directed transport of transmembrane proteins is generally believed to occur via intracellular transport vesicles. However, using single-particle tracking in rat hippocampal neurons with a pH-sensitive quantum dot probe that specifically reports surface movement of receptors, we have identified a subpopulation of neuronal EphB2 receptors that exhibit directed motion between synapses within the plasma membrane itself. This receptor movement occurs independently of the cytoskeleton but is dependent on cholesterol and is regulated by neuronal activity.

3.
Stem Cell Res Ther ; 9(1): 206, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30064494

ABSTRACT

BACKGROUND: Deletions and mutations in the SHANK3 gene are strongly associated with autism spectrum disorder and underlie the autism-associated disorder Phelan-McDermid syndrome. SHANK3 is a scaffolding protein found at the post-synaptic membrane of excitatory neurons. METHODS: Single-molecule fluorescence in-situ hybridization (smFISH) allows the visualization of single mRNA transcripts in vitro. Here we perform and quantify smFISH in human inducible pluripotent stem cell (hiPSC)-derived cortical neurons, targeting the SHANK3 transcript. RESULTS: Both smFISH and conventional immunofluorescence staining demonstrated a developmental increase in SHANK3 mRNA and protein, respectively, in control human cortical neurons. Analysis of single SHANK3 mRNA molecules in neurons derived from an autistic individual heterozygous for SHANK3 indicated that while the number of SHANK3 mRNA transcripts remained comparable with control levels in the cell soma, there was a 50% reduction within neuronal processes, suggesting that local, dendritic targeting of SHANK3 mRNA may be specifically affected in SHANK3 haploinsufficiency. CONCLUSION: Human SHANK3 mRNA shows developmentally regulated dendritic localization in hiPSC-derived neurons, which is reduced in neurons generated from a haploinsufficient individual with autism. Although further replication is needed, given the importance of local mRNA translation in synaptic function, this could represent an important early abnormality.


Subject(s)
Autism Spectrum Disorder/genetics , In Situ Hybridization, Fluorescence/methods , Nerve Tissue Proteins/metabolism , RNA, Messenger/metabolism , Autism Spectrum Disorder/pathology , Humans
4.
Stem Cell Res Ther ; 6: 149, 2015 Aug 22.
Article in English | MEDLINE | ID: mdl-26296747

ABSTRACT

INTRODUCTION: Conditionally immortalised human neural progenitor cells (hNPCs) represent a robust source of native neural cells to investigate physiological mechanisms in both health and disease. However, in order to recognise the utility of such cells, it is critical to determine whether they retain characteristics of their tissue of origin and generate appropriate neural cell types upon differentiation. To this end, we have characterised the conditionally immortalised, cortically-derived, human NPC line, CTX0E16, investigating the molecular and cellular phenotype of differentiated neurons to determine whether they possess characteristics of cortical glutamatergic neurons. METHODS: Differentiated CTX0E16 cells were characterised by assessing expression of several neural fates markers, and examination of developing neuronal morphology. Expression of neurotransmitter receptors, signalling proteins and related proteins were assessed by q- and RT-PCR and complemented by Ca(2+) imaging, electrophysiology and assessment of ERK signalling in response to neurotransmitter ligand application. Finally, differentiated neurons were assessed for their ability to form putative synapses and to respond to activity-dependent stimulation. RESULTS: Differentiation of CTX0E16 hNPCs predominately resulted in the generation of neurons expressing markers of cortical and glutamatergic (excitatory) fate, and with a typical polarized neuronal morphology. Gene expression analysis confirmed an upregulation in the expression of cortical, glutamatergic and signalling proteins following differentiation. CTX0E16 neurons demonstrated Ca(2+) and ERK1/2 responses following exogenous neurotransmitter application, and after 6 weeks displayed spontaneous Ca(2+) transients and electrophysiological properties consistent with that of immature neurons. Differentiated CTX0E16 neurons also expressed a range of pre- and post-synaptic proteins that co-localized along distal dendrites, and moreover, displayed structural plasticity in response to modulation of neuronal activity. CONCLUSIONS: Taken together, these findings demonstrate that the CTX0E16 hNPC line is a robust source of cortical neurons, which display functional properties consistent with a glutamatergic phenotype. Thus CTX0E16 neurons can be used to study cortical cell function, and furthermore, as these neurons express a range of disease-associated genes, they represent an ideal platform with which to investigate neurodevelopmental mechanisms in native human cells in health and disease.


Subject(s)
Neural Stem Cells/cytology , Neurons/cytology , Action Potentials/physiology , Cell Differentiation/physiology , Cell Line , Humans , Neurons/metabolism
5.
Hippocampus ; 24(1): 32-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23996525

ABSTRACT

The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.


Subject(s)
CA1 Region, Hippocampal/physiology , MAP Kinase Signaling System/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pyramidal Cells/physiology , Animals , CA1 Region, Hippocampal/drug effects , Male , Patch-Clamp Techniques , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley
7.
Neuron ; 68(6): 1109-27, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21172613

ABSTRACT

A rise in [Ca(2+)](i) provides the trigger for neurotransmitter release at neuronal boutons. We have used confocal microscopy and Ca(2+) sensitive dyes to directly measure the action potential-evoked [Ca(2+)](i) in the boutons of Schaffer collaterals. This reveals that the trial-by-trial amplitude of the evoked Ca(2+) transient is bimodally distributed. We demonstrate that "large" Ca(2+) transients occur when presynaptic NMDA receptors are activated following transmitter release. Presynaptic NMDA receptor activation proves critical in producing facilitation of transmission at theta frequencies. Because large Ca(2+) transients "report" transmitter release, their frequency on a trial-by-trial basis can be used to estimate the probability of release, p(r). We use this novel estimator to show that p(r) increases following the induction of long-term potentiation.


Subject(s)
Hippocampus/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Theta Rhythm/physiology , Animals , Animals, Newborn , Male , Organ Culture Techniques , Rats , Rats, Wistar
8.
Mol Pharmacol ; 70(5): 1771-82, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16926279

ABSTRACT

SK channels are small conductance Ca(2+)-activated K(+) channels important for the control of neuronal excitability, the fine tuning of firing patterns, and the regulation of synaptic mechanisms. The classic SK channel pharmacology has largely focused on the peptide apamin, which acts extracellularly by a pore-blocking mechanism. 1-Ethyl-2-benzimidazolinone (1-EBIO) and 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) have been identified as positive gating modulators that increase the apparent Ca(2+) sensitivity of SK channels. In the present study, we describe inhibitory gating modulation as a novel principle for selective inhibition of SK channels. In whole-cell patch-clamp experiments, the compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reversibly inhibited recombinant SK3-mediated currents (human SK3 and rat SK3) with potencies around 100 nM. However, in contrast to known pore blockers, NS8593 did not inhibit (125)I-apamin binding. Using excised patches, it was demonstrated that NS8593 decreased the Ca(2+) sensitivity by shifting the activation curve for Ca(2+) to the right, only slightly affecting the maximal Ca(2+)-activated SK current. NS8593 inhibited all the SK1-3 subtypes Ca(2+)-dependently (K(d) = 0.42, 0.60, and 0.73 microM, respectively, at 0.5 microM Ca(2+)), whereas the compound did not affect the Ca(2+)-activated K(+) channels of intermediate and large conductance (hIK and hBK channels, respectively). The site of action was accessible from both sides of the membrane, and the NS8593-mediated inhibition was prevented in the presence of a high concentration of the positive modulator NS309. NS8593 was further tested on mouse CA1 neurons in hippocampal slices and shown to inhibit the apaminand tubocurarine-sensitive SK-mediated afterhyperpolarizing current, at a concentration of 3 microM.


Subject(s)
1-Naphthylamine/pharmacology , Hippocampus/cytology , Ion Channel Gating/drug effects , Membrane Potentials/drug effects , Neurons/drug effects , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/chemistry , Animals , Apamin/pharmacology , Calcium/metabolism , Humans , Indoles/pharmacology , Male , Mice , Neurons/metabolism , Oximes/pharmacology , Rats , Rats, Wistar , Recombinant Proteins/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...