Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(5): pgae185, 2024 May.
Article in English | MEDLINE | ID: mdl-38779114

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a common and life-threatening infection that imposes up to 30% mortality even when appropriate therapy is used. Despite in vitro efficacy determined by minimum inhibitory concentration breakpoints, antibiotics often fail to resolve these infections in vivo, resulting in persistent MRSA bacteremia. Recently, several genetic, epigenetic, and proteomic correlates of persistent outcomes have been identified. However, the extent to which single variables or their composite patterns operate as independent predictors of outcome or reflect shared underlying mechanisms of persistence is unknown. To explore this question, we employed a tensor-based integration of host transcriptional and cytokine datasets across a well-characterized cohort of patients with persistent or resolving MRSA bacteremia outcomes. This method yielded high correlative accuracy with outcomes and immunologic signatures united by transcriptomic and cytokine datasets. Results reveal that patients with persistent MRSA bacteremia (PB) exhibit signals of granulocyte dysfunction, suppressed antigen presentation, and deviated lymphocyte polarization. In contrast, patients with resolving bacteremia (RB) heterogeneously exhibit correlates of robust antigen-presenting cell trafficking and enhanced neutrophil maturation corresponding to appropriate T lymphocyte polarization and B lymphocyte response. These results suggest that transcriptional and cytokine correlates of PB vs. RB outcomes are complex and may not be disclosed by conventional modeling. In this respect, a tensor-based integration approach may help to reveal consensus molecular and cellular mechanisms and their biological interpretation.

2.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961516

ABSTRACT

Receptor tyrosine kinase (RTK)-targeted therapies are often effective but invariably limited by drug resistance. A major mechanism of acquired resistance involves "bypass" switching to alternative pathways driven by non-targeted RTKs that restore proliferation. One such RTK is AXL whose overexpression, frequently observed in bypass resistant tumors, drives both cell survival and associated malignant phenotypes such as epithelial-to-mesenchymal (EMT) transition and migration. However, the signaling molecules and pathways eliciting these responses have remained elusive. To explore these coordinated effects, we generated a panel of mutant lung adenocarcinoma PC9 cell lines in which each AXL intracellular tyrosine residue was mutated to phenylalanine. By integrating measurements of phosphorylation signaling and other phenotypic changes associated with resistance through multivariate modeling, we mapped signaling perturbations to specific resistant phenotypes. Our results suggest that AXL signaling can be summarized into two clusters associated with progressive disease and poor clinical outcomes in lung cancer patients. These clusters displayed favorable Abl1 and SFK motifs and their phosphorylation was consistently decreased by dasatinib. High-throughput kinase specificity profiling showed that AXL likely activates the SFK cluster through FAK1 which is known to complex with Src. Moreover, the SFK cluster overlapped with a previously established focal adhesion kinase (FAK1) signature conferring EMT-mediated erlotinib resistance in lung cancer cells. Finally, we show that downstream of this kinase signaling, AXL and YAP form a positive feedback loop that sustains drug tolerant persister cells. Altogether, this work demonstrates an approach for dissecting signaling regulators by which AXL drives erlotinib resistance-associated phenotypic changes.

3.
Sci Signal ; 16(807): eadg0699, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37847758

ABSTRACT

The cytokine interleukin-2 (IL-2) has the potential to treat autoimmune disease but is limited by its modest specificity toward immunosuppressive regulatory T (Treg) cells. IL-2 receptors consist of combinations of α, ß, and γ chains of variable affinity and cell specificity. Engineering IL-2 to treat autoimmunity has primarily focused on retaining binding to the relatively Treg-selective, high-affinity receptor while reducing binding to the less selective, low-affinity receptor. However, we found that refining the designs to focus on targeting the high-affinity receptor through avidity effects is key to optimizing Treg selectivity. We profiled the dynamics and dose dependency of signaling responses in primary human immune cells induced by engineered fusions composed of either wild-type IL-2 or mutant forms with altered affinity, valency, and fusion to the antibody Fc region for stability. Treg selectivity and signaling response variations were explained by a model of multivalent binding and dimer-enhanced avidity-a combined measure of the strength, number, and conformation of interaction sites-from which we designed tetravalent IL-2-Fc fusions that had greater Treg selectivity in culture than do current designs. Biasing avidity toward IL2Rα with an asymmetrical multivalent design consisting of one α/ß chain-binding and one α chain-binding mutant further enhanced Treg selectivity. Comparative analysis revealed that IL2Rα was the optimal cell surface target for Treg selectivity, indicating that avidity for IL2Rα may be the optimal route to producing IL-2 variants that selectively target Tregs.


Subject(s)
Interleukin-2 , T-Lymphocytes, Regulatory , Humans , Interleukin-2/genetics , Interleukin-2/pharmacology , Receptors, Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit , Cytokines/metabolism
4.
ACS Infect Dis ; 8(10): 2073-2083, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36083849

ABSTRACT

Paenibacterin A1 (PA1) is a broad-spectrum, cationic cyclic lipodepsipeptide antibiotic isolated from Paenibacillus thiaminolyticus. In this study, the roles of the cationic residues and lipid tail length on the in vitro antibacterial and hemolytic activities of PA1 was examined in the context of an active PA1 analogue, called PAK, in which the two D-Orn residues in PA1 were converted to D-Lys residues. The effect of reducing the length of the lipid tail in PAK from 15 to 12-10 carbons on the minimum inhibitory concentration (MIC) depended upon the bacteria. This change had little effect on the MIC against Escherichia coli and Bacillus subtilis but resulted in a reduction in activity against most of the ESKAPE pathogens tested with the exception of Klebsiella pneumoniae. Any one of the four cationic residues in PAK could be replaced with alanine with only a minimal effect on its MIC against B. subtilis, E.coli, K. pneumoniae, Acinetobacter baumannii, and MSSA. For Pseudomonas aeruginosa and the two MRSA strains tested, the presence of cationic residues at positions 7 and 12 are not important for activity, while the cationic residues at positions 1 and 4 are important. While PAK exhibited some hemolysis at 8 µg/mL and 70% hemolysis at 128 µg/mL, its C-12 and C-10 analogues were not hemolytic up to 128 µg/mL. All PAK analogues that had one or two cationic residues replaced with alanine were as hemolytic as or more hemolytic than PAK.


Subject(s)
Hemolysis , Lipopeptides , Alanine/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli , Humans , Klebsiella pneumoniae , Lipopeptides/pharmacology
5.
Org Biomol Chem ; 20(47): 9319-9329, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36129316

ABSTRACT

Daptomycin is an important clinical antibiotic for which resistance is rising. Daptomycin resistant strains of S. aureus often have increased 1,2-diacyl-sn-glycero-3-[phospho-1-(3-lysyl(1-glycerol))] (lysyl-PG) and mutations to the proteins directly involved in the synthesis and translocation of lysyl-PG are implicated in resistance mechanisms. To study the interaction of daptomycin with lysyl-DMPG-containing model membranes a new stereospecific and regioselective synthesis of lysyl-DMPG was developed. Studies on model membranes containing lysyl-DMPG demonstrate that: (1) daptomycin is not significantly repelled by the cationic charge of lysyl-DMPG; (2) daptomycin binds less avidly to lysyl-DMPG compared to DMPG; (3) the presence of lysyl-DMPG does not impact the membrane bound backbone conformation of daptomycin in a significant way; (4) lysyl-DMPG increases oligomer formation; (5) lysyl-DMPG does not impact model membrane fluidity at lysyl-PG : PG ratios that are relevant to daptomycin resistance. The results of these studies suggest that increased lysyl-PG content does not confer resistance to daptomycin by altering membrane fluidity or reducing membrane affinity but may confer resistance by altering the structure of daptomycin oligomers.


Subject(s)
Daptomycin , Daptomycin/pharmacology , Staphylococcus aureus
6.
ACS Infect Dis ; 8(9): 1935-1947, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36001599

ABSTRACT

A54145 factor D (A5D) is a cyclic lipopeptide antibiotic that shares several structural and mechanistic features with the clinically important antibiotic daptomycin, such as their requirement for calcium and phosphatidylglycerol (PG) for activity. Studies by others have suggested that daptomycin's activity is strongly inhibited by lung surfactant while A5D's activity is not. This finding has inspired efforts, albeit unsuccessful, to develop an A5D analogue that is highly active in the presence of lung surfactant and can be used for treating community acquired pneumonia (CAP). Here we demonstrate that A5D, like daptomycin, has a strong preference for the 1,2-diacyl-sn-glycero-3-phospho-1'-sn-glycerol stereoisomer (2R,2'S configuration) of PG. This PG stereoisomer was determined to be the only stereoisomer of PG in lung surfactant. Both antibiotics are completely antagonized by approximately 1-2 mol equiv of 2R,2'S-PG. Studies performed in the presence of lung surfactant revealed that the antagonism of these peptides by surfactant is mainly due to their interaction with PG and that A5D is not significantly less susceptible to inhibition by lung surfactant than daptomycin.


Subject(s)
Daptomycin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Complement Factor D , Daptomycin/chemistry , Daptomycin/pharmacology , Lipoproteins , Lung , Microbial Sensitivity Tests , Phosphatidylglycerols/chemistry , Surface-Active Agents/pharmacology
7.
ACS Infect Dis ; 8(8): 1674-1686, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35793519

ABSTRACT

Daptomycin is a clinical antibiotic used to treat serious infections caused by Gram-positive bacteria. Although there is debate about the action mechanism of daptomycin, it is known that daptomycin requires both calcium and phosphatidylglycerol (PG) to exert its antibacterial effect. Despite the importance and uniqueness of the interaction of daptomycin with PG, very little is known about this interaction or the nascent daptomycin-PG complex. In this work, we establish a structure-activity relationship between daptomycin and PG through the synthesis of PG analogues. In total, nine PGs were synthesized using a divergent approach employing phosphoramidite chemistry. The interaction between daptomycin and these PGs was studied using fluorescence, circular dichroism, and isothermal titration calorimetry. It was determined that daptomycin is highly sensitive to the modification of the headgroup of PG and both hydroxyl groups influence membrane binding, oligomerization, and backbone structure. Methylation of each hydroxyl in the headgroup suggests that the binding pocket envelops both hydroxyl groups. A PG acyl tail chain length of at least 7-8 carbons is required for stoichiometric binding at micromolar peptide concentrations. Daptomycin binds to PG having 8-carbon, linear, unsaturated acyl groups (C8PGs) at the micromolar concentration and interacts with C8PG in essentially the same manner as when the PG is incorporated into a liposome, and thus, preassembly of individual PG moieties is not a prerequisite for binding, structural transition, and oligomerization.


Subject(s)
Daptomycin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Daptomycin/chemistry , Daptomycin/pharmacology , Gram-Positive Bacteria , Phosphatidylglycerols/chemistry , Structure-Activity Relationship
8.
J Am Chem Soc ; 144(28): 12681-12689, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35802879

ABSTRACT

Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.


Subject(s)
Peptide Hydrolases , Proteins , Biotechnology , Endopeptidases , Prospective Studies
9.
ACS Infect Dis ; 8(4): 778-789, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35317552

ABSTRACT

Daptomycin is an important antibiotic used for treating serious infections caused by Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci. Establishing structure-activity relationships of daptomycin is important for developing new daptomycin-based antibiotics with expanded clinical applications and for tackling the ever-increasing problem of antimicrobial resistance. Toward this end, Dap-K6-E12-W13, an active analogue of daptomycin in which the uncommon amino acids in daptomycin are replaced with their common counterparts, was used as a model system for studying the effect of amino acid variation at positions 8 and 11 on in vitro biological activity against a model organism, Bacillus subtilis, and calcium-dependent insertion into model membranes. None of the new peptides were more active than Dap-K6-E12-W13; however, substitution at positions 8 and/or 11 with cationic residues resulted in little or no loss of activity, and some of these analogues were able to insert into model membranes at lower calcium ion concentrations than the parent peptide. Incorporation of these cationic residues into positions 8 and/or 11 of daptomycin itself yielded some derivatives that exhibited lower minimum inhibitory concentrations than daptomycin against B. subtilis 1046 as well as comparable and sometimes superior activity against clinical isolates of MRSA.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Calcium , Daptomycin/chemistry , Daptomycin/pharmacology , Microbial Sensitivity Tests
10.
Angew Chem Int Ed Engl ; 61(4): e202114858, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34843157

ABSTRACT

Daptomycin (dap) is an important antibiotic that interacts with the bacterial membrane lipid phosphatidylglycerol (PG) in a calcium-dependent manner. The enantiomer of dap (ent-dap) was synthesized and was found to be 85-fold less active than dap against B. subtilis, indicating that dap interacts with a chiral target as part of its mechanism of action. Using liposomes containing enantiopure PG, we demonstrate that the binding of dap to PG, the structural transition that occurs upon dap binding to PG, and the subsequent oligomerization of dap, depends upon the configuration of PG, and that dap prefers the 1,2-diacyl-sn-glycero-3-phospho-1'-sn-glycerol stereoisomer (2R,2'S configuration). Ent-dap has a lower affinity for 2R,2'S liposomes than dap and cannot oligomerize to the same extent as dap, which accounts for why ent-dap is less active than dap. To our knowledge, this is the first example whereby the activity of an antibiotic depends upon the configuration of a lipid head group.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Daptomycin/pharmacology , Escherichia coli/drug effects , Phosphatidylglycerols/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Daptomycin/chemical synthesis , Daptomycin/chemistry , Microbial Sensitivity Tests , Molecular Structure , Stereoisomerism
11.
Mol Syst Biol ; 17(9): e10243, 2021 09.
Article in English | MEDLINE | ID: mdl-34487431

ABSTRACT

Systems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms. Here, we report that coupled matrix-tensor factorization (CMTF) can reduce these data into consistent patterns by recognizing the intrinsic structure of these data. We use measurements from two previous studies of HIV- and SARS-CoV-2-infected subjects as examples. CMTF outperforms standard methods like principal components analysis in the extent of data reduction while maintaining equivalent prediction of immune functional responses and disease status. Under CMTF, model interpretation improves through effective data reduction, separation of the Fc and antigen-binding effects, and recognition of consistent patterns across individual measurements. Data reduction also helps make prediction models more replicable. Therefore, we propose that CMTF is an effective general strategy for data exploration in systems serology.


Subject(s)
AIDS Serodiagnosis , COVID-19 Serological Testing , COVID-19/immunology , Data Interpretation, Statistical , HIV Infections/immunology , AIDS Serodiagnosis/methods , AIDS Serodiagnosis/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/metabolism , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Humans , Immunity, Humoral , Killer Cells, Natural/immunology , Logistic Models , Receptors, Fc/immunology , Receptors, IgG/immunology
12.
J Org Chem ; 86(17): 11407-11418, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34387500

ABSTRACT

Environmentally sensitive fluorescent amino acids (FlAAs) have been used extensively to probe biological interactions. However, most of these amino acids are large and do not resemble amino acid side chains. Here, we report the enantioselective synthesis of two small and environmentally sensitive fluorescent amino acids bearing 7-dialkylaminocoumarin side chains by alkylation of a Ni(II) glycine Schiff base complex. These amino acids exhibit a large increase in fluorescence as environment polarity decreases. One of these FLAAs was incorporated into a highly active analog of the cyclic lipopeptide antibiotic paenibacterin by Fmoc solid-phase peptide synthesis via a new and very efficient route. This peptide was used to probe the interaction of the antibiotic with model liposomes, lipopolysaccharides, and live bacteria.


Subject(s)
Amino Acids , Solid-Phase Synthesis Techniques , Molecular Structure , Peptides , Stereoisomerism
13.
J Org Chem ; 86(9): 6577-6591, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33847499

ABSTRACT

The synthesis of ß-hydroxy-α,α-difluorosulfonamides was achieved by reacting difluoromethanesulfonamides with KHMDS in the presence of an aldehyde or ketone. The reaction exhibited a dramatic counterion effect with KHMDS or NaHMDS usually giving excellent yields in minutes, while lithium bases gave little or no product. Excellent yields and high diastereomeric ratios were achieved with Nα-benzyl-Nα-phenylfluorenyl (PhF)-protected chiral amino aldehydes derived from amino acids. Following deprotection, a ß-hydroxy-α,α-sulfonamide reacted under peptide coupling and Mitsunobu conditions to furnish a peptidomimetic in an excellent overall yield.


Subject(s)
Aldehydes , Amino Acids , Ketones , Peptides , Stereoisomerism
14.
Org Lett ; 23(8): 3048-3052, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33769052

ABSTRACT

A new approach to the synthesis of Z-dehydrotryptophan (ΔTrp) peptides is described. This approach uses Fmoc-ß-HOTrp(Boc)(TBS)-OH as a building block, which is readily prepared in high yield and incorporated into peptides using solid-phase Fmoc chemistry. The tert-butyldimethylsilyl-protected indolic alcohol is eliminated during global deprotection/resin cleavage to give ΔTrp peptides exclusively as the thermodynamically favored Z isomer. This approach was applied to the solid-phase synthesis of tunicyclin B, sclerotide A, CDA3a, and CDA4a.


Subject(s)
5-Hydroxytryptophan/chemical synthesis , Amino Acids/chemical synthesis , Fluorenes/chemical synthesis , Peptides, Cyclic/chemistry , 5-Hydroxytryptophan/chemistry , Molecular Structure , Peptides, Cyclic/chemical synthesis , Solid-Phase Synthesis Techniques
15.
Org Biomol Chem ; 19(14): 3144-3153, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33508054

ABSTRACT

A high-yielding total synthesis of daptomycin, an important clinical antibiotic, is described. Key to the development of this synthesis was the elucidation of a Camps cyclization reaction that occurs in the solid-phase when conventionally used kynurenine (Kyn) synthons, such as Fmoc-l-Kyn(Boc,CHO)-OH and Fmoc-l-Kyn(CHO,CHO)-OH, are exposed to 20% 2-methylpiperidine (2MP)/DMF. During the synthesis of daptomycin, this side reaction was accompanied by intractable peptide decomposition, which resulted in a low yield of Dap and a 4-quinolone containing peptide. The Camps cyclization was found to occur in solution when Boc-l-Kyn(Boc,CHO)-Ot-Bu and Boc-l-Kyn(CHO,CHO)-OMe were exposed to 20% 2MP/DMF giving the corresponding 4-quinolone amino acid. In contrast, Boc-l-Kyn(CHO)-OMe was stable under these conditions, demonstrating that removing one of the electron withdrawing groups from the aforementioned building blocks prevents enolization in 2MP/DMF. Hence, a new synthesis of daptomycin was developed using Fmoc-l-Kyn(Boc)-OH, which is prepared in two steps from Fmoc-l-Trp(Boc)-OH, that proceeded with an unprecedented 22% overall yield. The simplicity and efficiency of this synthesis will facilitate the preparation of analogs of daptomycin. In addition, the elucidation of this side reaction will simplify preparation of other Kyn-containing natural products via Fmoc SPPS.


Subject(s)
Blood Proteins/chemistry , Daptomycin/chemical synthesis , Fluorenes/chemistry , Kynurenine/chemistry , Solid-Phase Synthesis Techniques , Daptomycin/chemistry , Molecular Conformation
16.
Environ Sci Technol ; 54(21): 13981-13991, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33095566

ABSTRACT

The reclamation of land and recovery of water from tailing ponds created during bitumen extraction from oil sands is a major technical and environmental challenge. In the current study, thermoresponsive hydroxybutylated (HB) corn starch (HB-CS) and potato starch (HB-PS), with lower critical solution temperatures (LCSTs) ranging from 36 to 45 °C, were examined as flocculants for oil sands mature fine tailings (MFT). The ability of different doses of the HB-CS and HB-PS to flocculate 2 and 10 wt % MFT, prepared by diluting 35 wt % MFT in tap water, in terms of the initial settling rate (ISR), supernatant turbidity (ST), sediment solids content (SSC), and water recovery (WR), was examined at temperatures below and above their LCSTs. The thermoresponsive HB-CS and HB-PS were good flocculants of MFT, and their thermoresponsive behavior was essential for optimal results in that they were considerably more effective in several aspects at temperatures above their LCSTs than below. In terms of ISRs, the HB-PS was a considerably better flocculant than the HB-CS, and this was especially so with the 10 wt % MFT. With the HB-PS, the ISR was lower when using diluted MFT prepared with tap water as opposed to simulated oil sands process water.


Subject(s)
Oil and Gas Fields , Starch , Flocculation , Water
17.
Cell Death Dis ; 11(8): 699, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32839444

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Amino Acids ; 52(6-7): 987-998, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32621203

ABSTRACT

A 6-step enantioselective synthesis of (2S,3R)-3-alkyl/alkenylglutamates, including the biologically significant amino acid, (2S,3R)-3-methylglutamate, protected for Fmoc SPPS, is reported. Overall yields range from 52-65%. Key to the success of these syntheses was the development of a high-yielding 2-step synthesis of Fmoc Garner's aldehyde followed by a Horner-Wadsworth-Emmons reaction to give the corresponding Fmoc Garner's enoate in a 94% yield. The diastereoselective 1,4-addition of lithium dialkylcuprates to the Fmoc Garner's enoate was explored. Significant decomposition occurred when using lithium diethylcuprate and conditions previously reported for the 1,4-addition of lithium dialkylcuprates to Boc or Cbz-protected Garner's enoate. An optimization study of this reaction resulted in a robust set of conditions that addressed the shortcomings of previously reported conditions. Under these conditions, highly diastereoselective (> 20:1 in most cases) 1,4-addition reactions of lithium dialkyl/dialkenylcuprates to the Fmoc Garner's enoate were achieved in 76-99% yield. The resulting 1,4-addition products were easily converted into the Fmoc-(2S,3R)-3-alkyl/alkenylglutamates in two steps.


Subject(s)
Aldehydes/chemistry , Glutamates/chemical synthesis , 3-O-Methylglucose/chemical synthesis , Amino Acids/chemical synthesis , Fluorenes , Serine/analogs & derivatives , Serine/chemical synthesis , Stereoisomerism
19.
Cell Death Dis ; 11(4): 255, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312951

ABSTRACT

Cancer cell sensitivity or resistance is almost universally quantified through a direct or surrogate measure of cell number. However, compound responses can occur through many distinct phenotypic outcomes, including changes in cell growth, apoptosis, and non-apoptotic cell death. These outcomes have divergent effects on the tumor microenvironment, immune response, and resistance mechanisms. Here, we show that quantifying cell viability alone is insufficient to distinguish between these compound responses. Using an alternative assay and drug-response analysis amenable to high-throughput measurement, we find that compounds with identical viability outcomes can have very different effects on cell growth and death. Moreover, additive compound pairs with distinct growth/death effects can appear synergistic when only assessed by viability. Overall, these results demonstrate an approach to incorporating measurements of cell death when characterizing a pharmacologic response.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Death/drug effects , Cell Survival/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans
20.
J Org Chem ; 85(4): 2213-2219, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31873009

ABSTRACT

The total solid-phase synthesis and in vitro biological activity of a series of analogs of A54145 factor D (A5D) and A54145 factor A1 (A5A1), two cyclic lipodepsipeptide antibiotics, are reported. An on-resin cyclization strategy was employed to prepare A5A1 analogs in which Thr4, the residue involved in the depsi (ester) bond, was replaced with either diaminopropionic acid (DAPA), (2S,3R)-diaminobutyric acid (DABA), or serine, effectively replacing the ring-closing ester bond with an amide linkage or with a primary ester. Antibacterial studies with these four analogs revealed that, contrary to a previous report, replacing the ester bond with an amide bond significantly reduces biological activity, and that both the ester bond and the methyl group at the γ-position of Thr4 are crucial for activity. Consistent with literature reports, we found that the single substitution of either 3-hydroxyasparagine (HOAsn) or 3-methoxyaspartate (MeOAsp) with Asn or Asp, respectively, in A5D is more detrimental to activity than the double substitution where both HOAsn and MeOAsp are replaced with Asn or Asp, respectively.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Cyclization , Solid-Phase Synthesis Techniques , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...