Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 129(11): 4817-4831, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31589162

ABSTRACT

BACKGROUNDSpinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein. New SMN-enhancing therapeutics are associated with variable clinical benefits. Limited knowledge of baseline and drug-induced SMN levels in disease-relevant tissues hinders efforts to optimize these treatments.METHODSSMN mRNA and protein levels were quantified in human tissues isolated during expedited autopsies.RESULTSSMN protein expression varied broadly among prenatal control spinal cord samples, but was restricted at relatively low levels in controls and SMA patients after 3 months of life. A 2.3-fold perinatal decrease in median SMN protein levels was not paralleled by comparable changes in SMN mRNA. In tissues isolated from nusinersen-treated SMA patients, antisense oligonucleotide (ASO) concentration and full-length (exon 7 including) SMN2 (SMN2-FL) mRNA level increases were highest in lumbar and thoracic spinal cord. An increased number of cells showed SMN immunolabeling in spinal cord of treated patients, but was not associated with an increase in whole-tissue SMN protein levels.CONCLUSIONSA normally occurring perinatal decrease in whole-tissue SMN protein levels supports efforts to initiate SMN-inducing therapies as soon after birth as possible. Limited ASO distribution to rostral spinal and brain regions in some patients likely limits clinical response of motor units in these regions for those patients. These results have important implications for optimizing treatment of SMA patients and warrant further investigations to enhance bioavailability of intrathecally administered ASOs.FUNDINGSMA Foundation, SMART, NIH (R01-NS096770, R01-NS062869), Ionis Pharmaceuticals, and PTC Therapeutics. Biogen provided support for absolute real-time RT-PCR.


Subject(s)
Aging , Motor Neurons , Muscular Atrophy, Spinal , Oligodeoxyribonucleotides, Antisense/administration & dosage , Spinal Cord , Aging/genetics , Aging/metabolism , Aging/pathology , Autopsy , Cell Survival , Female , Humans , Male , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Survival of Motor Neuron 2 Protein/antagonists & inhibitors , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
2.
PLoS One ; 11(12): e0167077, 2016.
Article in English | MEDLINE | ID: mdl-27907033

ABSTRACT

INTRODUCTION AND OBJECTIVE: Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. METHODS: SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. RESULTS: Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. CONCLUSION: This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers.


Subject(s)
Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Oligonucleotides, Antisense/genetics , Spinal Cord/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Animals , Animals, Newborn , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Clinical Trials as Topic , Disease Models, Animal , Gene Expression Regulation , Genetic Complementation Test , Humans , Injections, Intraventricular , Liver/metabolism , Liver/pathology , Mice , Mice, Transgenic , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Oligonucleotides, Antisense/metabolism , Spinal Cord/pathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...