Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 7(48): 7744-7755, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31750507

ABSTRACT

Phosphate-based glasses are materials of great interest for the regeneration and repair of damaged hard or soft tissues. They have the desirable property of slowly dissolving in the physiological environment, eventually being totally replaced by regenerated tissue. Being bioresorbable, they can simultaneously induce tissue regeneration and deliver therapeutic agents (e.g. antibacterial ions) in a controlled way. In this work, we have synthesised a series of glasses in the P2O5-CaO-Na2O system doped with Ag2O using the coacervation method. The addition of silver is known to provide the glass with antibacterial properties due to the release of Ag+ ions into the body fluid. The coacervation method is a facile, water-based technique which offers significant advantages over the conventional melt-quench route for preparing phosphate-based glasses which requires melting of metal oxide powders at high temperatures (1000-1200 °C). The properties of the initial colloidal polyphosphate systems (coacervates) as a function of the Ag2O content were characterised using rheology and liquid state 31P NMR. The effect of Ag+ addition on the final dried glasses was investigated using thermal analysis, Raman spectroscopy and X-ray diffraction. The antibacterial activity was assessed against Staphylococcus aureus (S. aureus), a bacterial strain commonly found in post-surgery infections. A dose-dependent antimicrobial effect was seen with an increasing silver content.


Subject(s)
Anti-Bacterial Agents/chemistry , Phosphates/chemistry , Silver/chemistry , Colloids , Glass/chemistry , Oxides , Polyphosphates , Silver/pharmacology , Silver Compounds , Staphylococcus aureus/drug effects
2.
Langmuir ; 35(34): 11150-11156, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31394037

ABSTRACT

This study considers the consequences of adding grains to an air-liquid interface from a funnel. Depending on the grain contact angle and liquid surface tension, the interface is found to support a single or multiple layers of grains, forming a granular stack. By continuing to add grains, the stacks grow until either the lower grains disperse in the liquid, or the complete stack breaks free from the surface and sinks as a dry powder lump. Herein, the effects of grain contact angle, density, and size on these processes are studied experimentally, and a theoretical analysis is given. The maximum number of grains contained in a floating stack and its critical depth are observed to increase as the grain size decreases. The maximum number of grains scales with the bond number (Bo) as Bo-1.82 when stack detachment is observed and with an exponent  -2.0 when grains disperse into the liquid. As a result of these different scaling exponents, a critical bond number above which grains wet and disperse can be identified. Favorable conditions for dispersion are achieved with larger grains and, to a lesser extent, by lower surface tension and contact angle. The critical bond number separating grain dispersion from lump formation increases with an increasing grain contact angle, thus providing a physical justification for increasing grain size with common processes such as granulation or agglomeration. Conversely, a quantitative framework to interpret the limitations in dispersing small grains is proposed, justifying the need for low contact angle or liquids with low surface tensions, both favored by the use of surfactants. The present findings have identified conditions under which lump formation occurs, and hence how these undesired phenomena can be avoided in applications requiring the efficient dispersion of grains across a liquid interface.

3.
J Colloid Interface Sci ; 508: 28-38, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28818654

ABSTRACT

BACKGROUND AND HYPOTHESIS: Humic acid (HA) is of considerable environmental significance, being a major component of soil, as well as being considered for application in other technological areas. However, its structure and colloidal properties continue to be the subject of debate, largely owing to its molecular complexity and association with other humic substances and mineral matter. As a class, HA is considered to comprise supramolecular assemblies of heterogeneous species, and herein we consider a simple route for the separation of some HA sub-fractions. EXPERIMENTS: A commercial HA sample from Sigma-Aldrich has been fractionated into two soluble (S1, S2) and two insoluble (I1, I2) fractions by successive dissolution in deionized water at near-neutral pH. These sub-fractions have been characterized by solution and solid-state approaches. FINDINGS: Using this simple approach, the HA has been shown to contain non-covalently bonded species with different polarity and water solubility. The soluble and insoluble fractions have very different chemical structures, as revealed particularly by their solid-state properties (13C NMR and IR spectroscopy, and TGA); in particular, S1 and S2 are characterized by higher carbonyl and aromatic contents, compared with I1 and I2. As shown by solution SAXS measurements and AFM, the soluble fractions behave as hydrophilic colloidal aggregates of at least 50nm diameter.

4.
ACS Appl Mater Interfaces ; 8(50): 34755-34761, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936562

ABSTRACT

Stratified coatings are used to provide properties at a surface, such as hardness or refractive index, which are different from underlying layers. Although time-savings are offered by self-assembly approaches, there have been no methods yet reported to offer stratification on demand. Here, we demonstrate a strategy to create self-assembled stratified coatings, which can be switched to homogeneous structures when required. We use blends of large and small colloidal polymer particle dispersions in water that self-assemble during drying because of an osmotic pressure gradient that leads to a downward velocity of larger particles. Our confocal fluorescent microscopy images reveal a distinct surface layer created by the small particles. When the pH of the initial dispersion is raised, the hydrophilic shells of the small particles swell substantially, and the stratification is switched off. Brownian dynamics simulations explain the suppression of stratification when the small particles are swollen as a result of reduced particle mobility, a drop in the pressure gradient, and less time available before particle jamming. Our strategy paves the way for applications in antireflection films and protective coatings in which the required surface composition can be achieved on demand, simply by adjusting the pH prior to deposition.

5.
J Colloid Interface Sci ; 480: 137-145, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27423129

ABSTRACT

BACKGROUND AND HYPOTHESIS: In the oil industry, asphaltenes are known for their tendency to aggregate in solution and to deposit on surfaces, with both properties being connected with operational problems associated with recovery, production and refining. Interactions involving asphaltenes and other crude oil components have been a major aspect of investigation in attempting to understand the full nature of these problems. Water is implicated in asphaltene behavior in solution, for example, where it has been found to delay the deposition of asphaltene aggregates. At interfaces, there is evidence that water-in-crude oil emulsion stability is enhanced through asphaltene-water interactions, and there have been a few reports that asphaltene adsorption on mineral surfaces is reduced in the presence of water. We consider the latter aspect, because the instances of reduced adsorption to date have not attempted to quantify the effect. Previous studies showed that vapor-phase adsorption of organic molecules is reduced in the presence of pre-adsorbed water and we were interested to determine whether the same is true for liquid-phase adsorption of asphaltenes. EXPERIMENTS: The surface of quartz sand was controlled by pre-adsorption of water from different relative humidity (RH) environments as the water adsorption isotherm is known from previous studies. These pre-conditioned sand samples were used as substrates for the adsorption from toluene solutions of n-heptane-precipitated asphaltenes (C7A) from an Athabasca oil sands bitumen. To supplement the adsorption behavior, atomic force microscopy (AFM) images were taken of the resultant sand grains at 0 and 80% RH, and low-field NMR was used to estimate the sand wettability. FINDINGS: Asphaltene adsorption on sand is sensitive to surface-adsorbed water, with ∼4-fold reduction in adsorption when increasing the RH from 0 to 100%. This is in general agreement with previous vapor-phase adsorption of small organic molecules, and is therefore believed to be the first demonstration of the effect of pre-adsorbed water on adsorption from solution. Asphaltene adsorption as a function of RH is the converse of literature water adsorption isotherm data. Three asphaltene adsorption regions have been tentatively identified based on water adsorption behavior and the literature interpretation of water structure on quartz: the highest asphaltene adsorption occurs at very low RH, decreasing to a near-constant value in the range ∼40-80% RH, followed by a rapid decrease beyond 80% RH. Further analysis strongly suggests that asphaltene adsorption decreases linearly with the thickness of the adsorbed water film. The effects of RH on asphaltene adsorption are also reflected in AFM images and NMR wettability results.

6.
Adv Colloid Interface Sci ; 224: 33-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253810

ABSTRACT

We present a discussion of the use of NMR in the characterization of heavy oils and oil sands and their interactions with water and solid surfaces. The phenomena probed by the NMR techniques take place over different length scales, ranging from molecular, through colloidal to macroscopic. During the course of the last 15 years, NMR applications have grown from their initial use in studying conventional oils in rocks to the characterization of more viscous oils in unconsolidated porous media. In particular, (1)H NMR relaxometry and diffusometry are considered with a view to the identification of oil and water in oilfield fluids and their environment. After some theoretical considerations, various topics of current significance to petroleum recovery and production are discussed, including oil viscosity (with new experimental viscosity correlations added), oil sands characterization, heavy oil emulsions, and the identification of solvent effects on oil components and asphaltene solution behaviour and interactions. We show that, increasingly, NMR is becoming an invaluable and versatile characterization tool in petroleum science, in both laboratory and field.

7.
Adv Colloid Interface Sci ; 217: 1-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25542133

ABSTRACT

Asphaltenes are considered to be the heaviest and most polar fractions of crude oils and are frequently implicated in problems encountered during production and refining as a result of phase separation. In recent years, considerable effort has been given to understanding the phase behaviour of these structurally heterogeneous materials from both experimental and computational perspectives. Various experimental studies have confirmed the long-advanced colloidal behaviour of asphaltenes in organic media, and this has inspired a number of modelling strategies. The present review is specifically concerned with advances in modelling asphaltene phase behaviour with emphasis on the use of the statistical associating fluid theory (SAFT), which it attempts to place into the wider context of thermodynamic treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...