Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454606

ABSTRACT

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Liposomes , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Animals , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Nanoparticles/chemistry , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Lipids/chemistry , Drug Delivery Systems/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Humans
2.
Clin Cancer Res ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506712

ABSTRACT

PURPOSE: The importance of cellular context to the synergy of DNA Damage Response (DDR) targeted agents is important for tumors with mutations in DDR pathways, but less well-established for tumors driven by oncogenic transcription factors. In this study, we exploit the widespread transcriptional dysregulation of the EWS-FLI1 transcription factor to identify an effective DDR targeted combination therapy for Ewing Sarcoma (ES). EXPERIMENTAL DESIGN: We used matrix drug screening to evaluate synergy between a DNA-PK inhibitor (M9831) or an ATR inhibitor (berzosertib) and chemotherapy. The combination of berzosertib and cisplatin was selected for broad synergy, mechanistically evaluated for ES selectivity, and optimized for in vivo schedule. RESULTS: Berzosertib combined with cisplatin demonstrates profound synergy in multiple ES cell lines at clinically achievable concentrations. The synergy is due to loss of expression of the ATR downstream target CHEK1, loss of cell cycle checkpoints, and mitotic catastrophe. Consistent with the goals of the project, EWS-FLI1 drives the expression of CHEK1 and five other ATR pathway members. The loss of CHEK1 expression is not due to transcriptional repression and instead caused by degradation coupled with suppression of protein translation. The profound synergy is realized in vivo with a novel optimized schedule of this combination in subsets of ES models leading to durable complete responses in 50% of animals bearing two different ES xenografts. CONCLUSION: These data exploit EWS-FLI1 driven alterations in cell context to broaden the therapeutic window of berzosertib and cisplatin to establish a promising combination therapy and a novel in vivo schedule.

3.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38251865

ABSTRACT

Modeling has led to proposals that the amount of neural tissue folding is set by the level of differential expansion between tissue layers and that the wavelength is set by the thickness of the outer layer. Here, we used inbred mouse strains with distinct amounts of cerebellar folding to investigate these predictions. We identified a distinct critical period during which the folding amount diverges between the two strains. In this period, regional changes in the level of differential expansion between the external granule layer (EGL) and underlying core correlate with the folding amount in each strain. Additionally, the thickness of the EGL varies regionally during the critical period alongside corresponding changes in wavelength. The number of SHH-expressing Purkinje cells predicts the folding amount, but the proliferation rate in the EGL is the same between the strains. However, regional changes in the cell division angle within the EGL predicts both the tangential expansion and the thickness of the EGL. Cell division angle is likely a tunable mechanism whereby both the level of differential expansion along the perimeter and the thickness of the EGL are regionally tuned to set the amount and wavelength of folding.


Subject(s)
Cerebellum , Purkinje Cells , Mice , Animals , Cell Division
4.
Inorg Chem ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011639

ABSTRACT

Here, we report the mechanochemical synthesis and characterization of homoleptic uranium and lanthanide phosphinodiboranates with isopropyl and ethyl substituents attached to phosphorus. M(H3BPiPr2BH3)3 complexes with M = U, Nd, Sm, Tb, and Er were prepared by ball milling UI3(THF)4, SmBr3, or MI3 with three equivalents of K(H3BPiPr2BH3). M(H3BPEt2BH3)3 with M = U and Nd were prepared similarly using K(H3BPEt2BH3), and the complexes were purified by extraction and crystallization from Et2O or CH2Cl2. Single-crystal XRD studies revealed that all five M(H3BPiPr2BH3)3 crystallize as dimers, despite the significant differences in metal radii across the series. In contrast, Nd(H3BPEt2BH3)3 with smaller ethyl substituents crystallized as a coordination polymer. Crystals of U(H3BPEt2BH3)3 were not suitable for structural analysis, but crystals of U(H3BPMe2BH3)3 isolated in low yield by solution methods were isostructural with Nd(H3BPEt2BH3)3. 1H and 11B NMR studies in C6D6 revealed that all of the complexes form mixtures of monomer and oligomers when dissolved, and the extent of oligomerization was highly dependent on metal radius and phosphorus substituent size. A comprehensive analysis of all structurally characterized uranium and lanthanide phosphinodiboranate complexes reported to date, including those with larger Ph and tBu substituents, revealed that the degree of oligomerization in solution can be correlated to differences in B-P-B angles obtained from single-crystal XRD studies. Density functional theory calculations, which included structural optimizations in combination with conformational searches using tight binding methods, replicated the general experimental trends and revealed free energy differences that account for the different solution and solid-state structures. Collectively, these results reveal how steric changes to phosphorus substituents significantly removed from metal coordination sites can have a significant influence on solution speciation, deoligomerization energies, and the solid-state structure of homoleptic phosphinodiboranate complexes containing trivalent f-metals.

5.
Inorg Chem ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37851526

ABSTRACT

Gallium trichloride (GaCl3) was used as a solvent for the oxidative dissolution of the lanthanide (Ln) metals cerium (Ce) and holmium (Ho). Reactions were performed at temperatures above 100 °C in sealed vessels to maintain the liquid phase for GaCl3 during the oxidizing reactions. The best results were obtained from reactions using 8 equiv of GaCl3 to metal where the inorganic complexes [Ga][Ln(GaCl4)4] [Ln = Ce (1), Ho (2)] could be isolated. Recrystallization of 1 and 2 employing fluorobenzene (C6H5F) produced [Ga(η6-C6H5F)2][Ln(GaCl4)4] [Ln = Ce (3), Ho (4)] where reversible η6 coordination of C6H5F to [Ga]+ was observed. All complexes were characterized through elemental analysis (F and Cl), IR and UV-vis-near-IR spectroscopies, and both solution and solid-state NMR techniques.

6.
Psychol Health ; : 1-22, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592811

ABSTRACT

Self-monitoring weight is commonly recommended for higher-weight women with a history of breast cancer, despite evidence demonstrating potentially negative psychological consequences of frequent self-weighing. The extent to which higher-weight women with breast cancer experience emotional and behavioral consequences in response to daily self-weighing is unknown. In this pilot study, women (n = 51) with a history of breast cancer in a behavioral weight management program completed a weeklong daily diary protocol. Participants were asked to self-weigh every morning and report on subsequent weight-related shame and guilt, and end-of-day engagement in compensatory exercise, diet, and purging behaviors. Women reported higher levels of guilt on days when their body weight was higher than usual, and when there was more discrepancy between their current vs. goal weight. Additionally, women engaged in higher levels of compensatory diet behavior on days when they experienced more weight-related guilt than usual. Based on these preliminary findings, daily self-weighing may be associated with harmful emotional and behavioral consequences among higher-weight women with a history of breast cancer.

7.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37503300

ABSTRACT

Modeling has proposed that the amount of neural tissue folding is set by the level of differential-expansion between tissue layers and that the wavelength is set by the thickness of the outer layer. Here we used inbred mouse strains with distinct amounts of cerebellar folding to investigate these predictions. We identified a critical period where the folding amount diverges between the strains. In this period, regional changes in the level of differential-expansion between the external granule layer (EGL) and underlying core correlate with the folding amount in each strain. Additionally, the thickness of the EGL is regionally adjusted during the critical period alongside corresponding changes in wavelength. While the number of SHH-expressing Purkinje cells predicts the folding amount, the proliferation rate in the EGL is the same between the strains. However, regional changes in the cell division angle within the EGL predicts both the tangential-expansion and thickness of the EGL. Cell division angle is likely a tunable mechanism whereby both the level of differential-expansion and thickness of the EGL are regionally tuned to set the amount and wavelength of folding.

8.
J Outdoor Recreat Tour ; 41: 100482, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37521256

ABSTRACT

The emergence of Coronavirus 19 led to societal and behavioral changes, including intensified use of many public parks and trails for mental respite and leisure time physical activity. As visitors sought stress-relief in the great outdoors, they also encountered stressful situations as they navigated risk exposure. Recommendations to physically distance between parties was a key component to reduce risk, but compliance is unknown in the outdoor arena. This observational study of more than 10 000 trail user encounters documented distancing and enabled predictive analysis that revealed wider trails, smaller groups and signage led to greater distancing compliance. Managers and planners can integrate these findings immediately and in consideration of future trail designs to minimize risk exposure. Management implications: Select site features increase odds of distancing compliance and can inform management decisions and designs immediately and in addressing future use surges: wider trails, unpaved surfaces, and COVID-19 signage.As distancing compliance waned with time but signage increased compliance, innovative and dynamic signs may sustain compliance and multi-media communications should be considered.Both activity size and group type influence distancing so considering group size recommendations and activity separation are in order.

9.
Inorg Chem ; 62(22): 8462-8466, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37220066

ABSTRACT

The oxidative chlorination of the plutonium metal was achieved through a reaction with gallium(III) chloride (GaCl3). In DME (DME = 1,2-dimethoxyethane) as the solvent, substoichiometric (2.8 equiv) amounts of GaCl3 were added, which consumed roughly 60% of the plutonium metal over the course of 10 days. The salt species [PuCl2(dme)3][GaCl4] was isolated as pale-purple crystals, and both solid-state and solution UV-vis-NIR spectroscopies were consistent with the formation of a trivalent plutonium complex. The analogous reaction was performed with uranium metal, generating a dicationic trivalent uranium complex crystallized as the [UCl(dme)3][GaCl4]2 salt. The extraction of [UCl(dme)3][GaCl4]2 in DME at 70 °C followed by crystallization produced [{U(dme)3}2(µ-Cl3)][GaCl4]3, a product arising from the loss of GaCl3. This method of halogenation worked on a small scale for plutonium and uranium, providing a route to cationic Pu3+ and dicationic U3+ complexes using GaCl3 in DME.

10.
Epigenetics Chromatin ; 16(1): 14, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118773

ABSTRACT

BACKGROUND: Single-cell technologies to analyze transcription and chromatin structure have been widely used in many research areas to reveal the functions and molecular properties of cells at single-cell resolution. Sample multiplexing techniques are valuable when performing single-cell analysis, reducing technical variation and permitting cost efficiencies. Several commercially available methods have been used in many scRNA-seq studies. On the other hand, while several methods have been published, multiplexing techniques for single nuclear assay for transposase-accessible chromatin (snATAC)-seq assays remain under development. We developed a simple nucleus hashing method using oligonucleotide-conjugated antibodies recognizing nuclear pore complex proteins, NuHash, to perform snATAC-seq library preparations by multiplexing. RESULTS: We performed multiplexing snATAC-seq analyses on a mixture of human and mouse cell samples (two samples, 2-plex, and four samples, 4-plex) using NuHash. The analyses on nuclei with at least 10,000 read counts showed that the demultiplexing accuracy of NuHash was high, and only ten out of 9144 nuclei (2-plex) and 150 of 12,208 nuclei (4-plex) had discordant classifications between NuHash demultiplexing and discrimination using reference genome alignments. The differential open chromatin region (OCR) analysis between female and male samples revealed that male-specific OCRs were enriched in chromosome Y (four out of nine). We also found that five female-specific OCRs (20 OCRs) were on chromosome X. A comparative analysis between snATAC-seq and deeply sequenced bulk ATAC-seq on the same samples revealed that the bulk ATAC-seq signal intensity was positively correlated with the number of cell clusters detected in snATAC-seq. Moreover, when we categorized snATAC-seq peaks based on the number of cell clusters in which the peak was present, we observed different distributions over different genomic features between the groups. This result suggests that the peak intensities of bulk ATAC-seq can be used to identify different types of functional loci. CONCLUSIONS: Our multiplexing method using oligo-conjugated anti-nuclear pore complex proteins, NuHash, permits high-accuracy demultiplexing of samples. The NuHash protocol is straightforward, works on frozen samples, and requires no modifications for snATAC-seq library preparation.


Subject(s)
Cell Nucleus , Chromatin Immunoprecipitation Sequencing , Male , Female , Humans , Animals , Mice , Sequence Analysis, DNA/methods , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Oligonucleotides/metabolism
11.
ACS Appl Mater Interfaces ; 15(4): 6005-6012, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36599089

ABSTRACT

Stretchable electronic devices that maintain electrical function when subjected to stress or strain are useful for enabling new applications for electronics, such as wearable devices, human-machine interfaces, and components for soft robotics. Powering and communicating with these devices is a challenge. NFC (near-field communication) coils solve this challenge but only work efficiently when they are in close proximity to the device. Alternatively, electrical signals and power can arrive via physical connections between the stretchable device and an external source, such as a battery. The ability to create a robust physical and electrical connection between mechanically disparate components may enable new types of hybrid devices in which at least a portion is stretchable or deformable, such as hinges. This paper presents a simple method to make mechanical and electrical connections between elastomeric conductors and flexible (or rigid) conductors. The adhesion at the interface between these disparate materials arises from surface chemistry that forms strong covalent bonds. The utilization of liquid metals as the conductor provides stretchable interconnects between stretchable and non-stretchable electrical traces. The liquid metal can be printed or injected into vias to create interconnects. We characterized the mechanical and electrical properties of these hybrid devices to demonstrate the concept and identify geometric design criteria to maximize mechanical strength. The work here provides a simple and general strategy for creating mechanical and electrical connections that may find use in a variety of stretchable and soft electronic devices.

12.
Ann Pharmacother ; 57(8): 899-906, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36367093

ABSTRACT

BACKGROUND: Additional therapies for hepatic encephalopathy (HE) treatment are warranted. There are data evaluating the use of zinc for HE; however, clinical outcomes, specifically in the United States, are unknown. OBJECTIVE: To compare 30-day and 1-year all-cause readmission rates in patients with cirrhosis complicated by HE on lactulose and rifaximin to those on lactulose, rifaximin, and zinc. METHODS: This retrospective study included patients admitted with documented cirrhosis and home medications of lactulose and rifaximin, with or without zinc. Patients were stratified into 2 groups: those receiving lactulose and rifaximin for HE (control) and those receiving lactulose, rifaximin, and zinc for HE (treatment). The primary outcomes were 30-day and 1-year all-cause readmission rates. RESULTS: One-hundred fifty-seven patients were included (102 in control group, 55 in treatment group). Regarding 30-day and 1-year all-cause readmission rates, there was no difference between the control and treatment groups. CONCLUSION AND RELEVANCE: This is the first study conducted in the United States evaluating zinc for HE treatment. Zinc did not impact 30-day or 1-year all-cause readmission rates. Further studies are warranted to evaluate the potential benefit of zinc for HE, possibly in correlation with Model for End-stage Liver Disease-Sodium (MELD-Na) scores.


Subject(s)
End Stage Liver Disease , Hepatic Encephalopathy , Rifamycins , Humans , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/complications , Rifaximin/therapeutic use , Lactulose/therapeutic use , Gastrointestinal Agents/therapeutic use , Rifamycins/therapeutic use , Retrospective Studies , End Stage Liver Disease/drug therapy , Zinc/therapeutic use , Drug Therapy, Combination , Severity of Illness Index , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy
13.
Inorg Chem ; 61(46): 18466-18475, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36331515

ABSTRACT

A series of bis(acyl)phosphide-supported Eu complexes were synthesized (bis(acyl)phosphide = BAP). In this study, BAP ligands proved to be excellent ligands for the synthesis of both Eu3+ and Eu2+ molecular complexes. Sodium bis(mesitoyl)phosphide (Na(mesBAP)) and sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) were employed as ligand precursors for the synthesis of the Eu3+ complexes Eu(bis(mesitoyl)phosphide)3(thf)2 (Eu(mesBAP)3(thf)2) and Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)3 (Eu(trippBAP)3), as well as the Eu2+ complex, Eu(bis(2,4,6-triisopropylbenzoyl)phosphide)2(dme)2 (Eu(trippBAP)2(dme)2) (thf = tetrahydrofuran, dme = 1,2-dimethoxyethane). All complexes were characterized using a combination of UV-vis-NIR-IR and NMR spectroscopies, and single-crystal X-ray diffraction (SC-XRD). The magnetic properties of these three monomeric Eu complexes were investigated by variable-temperature magnetic susceptibility. The magnetic data are typical for these ions, with Eu(trippBAP)2(dme)2 displaying Curie-type behavior. Both Eu(trippBAP)3 and Eu(mesBAP)3(thf)2 possess similar 7F0-7F1 spin-orbit energy gaps and a similar zero-field splitting of the 7F1 state.

14.
Angew Chem Int Ed Engl ; 61(45): e202211145, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36097137

ABSTRACT

Qualitative differences in the reactivity of trivalent lanthanide and actinide complexes have long been attributed to differences in covalent metal-ligand bonding, but there are few examples where thermodynamic aspects of this relationship have been quantified, especially with U3+ and in the absence of competing variables. Here we report a series of dimeric phosphinodiboranate complexes with trivalent f-metals that show how shorter-than-expected U-B distances indicative of increased covalency give rise to measurable differences in solution deoligomerization reactivity when compared to isostructural complexes with similarly sized lanthanides. These results, which are in excellent agreement with supporting DFT and QTAIM calculations, afford rare experimental evidence concerning the measured effect of variations in metal-ligand covalency on the reactivity of trivalent uranium and lanthanide complexes.

15.
Front Genet ; 13: 817899, 2022.
Article in English | MEDLINE | ID: mdl-36061175

ABSTRACT

As sequencing and analysis techniques provide increasingly detailed data at a plummeting cost, it is increasingly popular to seek the answers to medical and public health challenges in the DNA sequences of affected populations. This is methodologically attractive in its simplicity, but a genomics-only approach ignores environmentally mediated health disparities, which are well-documented at multiple national and global scales. While genetic differences exist among populations, it is unlikely that these differences overcome social and environmental factors in driving the gap in health outcomes between privileged and oppressed communities. We advocate for following the lead of communities in addressing their self-identified interests, rather than treating widespread suffering as a convenient natural experiment.

16.
Inorg Chem ; 61(32): 12508-12517, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35905438

ABSTRACT

The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.


Subject(s)
Uranium , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ligands , Models, Molecular , Sodium , Uranium/chemistry
17.
Gastro Hep Adv ; 1(3): 328-341, 2022.
Article in English | MEDLINE | ID: mdl-35711675

ABSTRACT

Background and Aims: Individuals of African (AFR) ancestry have a higher incidence of colorectal cancer (CRC) than those of European (EUR) ancestry and exhibit significant health disparities. Previous studies have noted differences in the tumor microenvironment between AFR and EUR patients with CRC. However, the molecular regulatory processes that underpin these immune differences remain largely unknown. Methods: Multiomics analysis was carried out for 55 AFR and 456 EUR patients with microsatellite-stable CRC using The Cancer Genome Atlas. We evaluated the tumor microenvironment by using gene expression and methylation data, transcription factor, and master transcriptional regulator analysis to identify the cell signaling pathways mediating the observed phenotypic differences. Results: We demonstrate that downregulated genes in AFR patients with CRC showed enrichment for canonical pathways, including chemokine signaling. Moreover, evaluation of the tumor microenvironment showed that cytotoxic lymphocytes and neutrophil cell populations are significantly decreased in AFR compared with EUR patients, suggesting AFR patients have an attenuated immune response. We further demonstrate that molecules called "master transcriptional regulators" (MTRs) play a critical role in regulating the expression of genes impacting key immune processes through an intricate signal transduction network mediated by disease-associated transcription factors (TFs). Furthermore, a core set of these MTRs and TFs showed a positive correlation with levels of cytotoxic lymphocytes and neutrophils across both AFR and EUR patients with CRC, thus suggesting their role in driving the immune infiltrate differences between the two ancestral groups. Conclusion: Our study provides an insight into the intricate regulatory landscape of MTRs and TFs that orchestrate the differences in the tumor microenvironment between patients with CRC of AFR and EUR ancestry.

18.
Molecules ; 27(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35268673

ABSTRACT

Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.


Subject(s)
Hydrophobic and Hydrophilic Interactions
20.
Inorg Chem ; 61(5): 2391-2401, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35073063

ABSTRACT

Metal-ligand cooperativity (MLC), a phenomenon that leverages reactive ligands to promote synergistic reactions with metals, has proven to be a powerful approach to achieving new and unprecedented chemical transformations with metal complexes. While many examples of MLC are known with a wide range of substrates, experimentally quantifying how ligand modifications affect MLC binding strength remains a challenge. Here we describe how cyclic voltammetry (CV) was used to quantify differences in MLC binding strength in a series of square-pyramidal Ru complexes. This method relies on using multifunctional ligands (those capable of both MLC and ligand-centered redox activity) as electrochemical reporters of MLC binding strength. The synthesis and characterization of Ru complexes with three different redox-active tetradentate ligands and two different ancillary phosphines (PPh3 and PCy3) are described. Titration CV studies conducted using BH3·THF with BH3 as a model MLC substrate allowed ΔGMLC to be quantified for each complex. Compared to our base triaryl ligand, increasing π conjugation in the backbone of the redox-active ligand enhanced MLC binding, whereas increasing π conjugation in the flanking groups decreased the MLC binding strength. Structures and spectroscopic data collected for the isolated MLC complexes are also described along with supporting DFT calculations that were used to illuminate electronic factors that likely account for the observed differences in the MLC binding strength. These results demonstrate how redox-active ligands and CV can be used to quantify subtle differences in the MLC binding strength across a series of structurally related complexes with different ligand modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...