Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39386657

ABSTRACT

Embryonic hematopoietic stem and progenitor cells (HSPCs) have the unique ability to undergo rapid proliferation while maintaining multipotency, a clinically-valuable quality which currently cannot be replicated in vitro. Here, we show that embryonic HSPCs achieve this state by precise spatio-temporal regulation of reactive oxygen species (ROS) via Bnip3lb-associated developmentally-programmed mitophagy, a distinct autophagic regulatory mechanism from that of adult HSPCs. While ROS drives HSPC specification in the dorsal aorta, scRNAseq and live-imaging of Tg(ubi:mitoQC) zebrafish indicate that mitophagy initiates as HSPCs undergo endothelial-to-hematopoietic transition and colonize the caudal hematopoietic tissue (CHT). Knockdown of bnip3lb reduced mitophagy and HSPC numbers in the CHT by promoting myeloid-biased differentiation and apoptosis, which was rescued by anti-oxidant exposure. Conversely, induction of mitophagy enhanced both embryonic HSPC and lymphoid progenitor numbers. Significantly, mitophagy activation improved ex vivo functional capacity of hematopoietic progenitors derived from human-induced pluripotent stem cells (hiPSCs), enhancing serial-replating hematopoietic colony forming potential. HIGHLIGHTS: ROS promotes HSPC formation in the dorsal aorta but negatively affects maintenance thereafter.HSPCs colonizing secondary niches control ROS levels via Bnip3lb-directed mitophagy.Mitophagy protects nascent HSPCs from ROS-associated apoptosis and maintains multipotency.Induction of mitophagy enhances long-term hematopoietic potential of iPSC-derived HSPCs.

SELECTION OF CITATIONS
SEARCH DETAIL