Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131274, 2024 May.
Article in English | MEDLINE | ID: mdl-38569991

ABSTRACT

The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.


Subject(s)
Intrinsically Disordered Proteins , Proteome , Vitreous Body , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Proteome/metabolism , Vitreous Body/metabolism , Eye Proteins/metabolism
3.
Invest Ophthalmol Vis Sci ; 64(11): 14, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37561450

ABSTRACT

Purpose: We aimed to characterize the proteome of human tears and assess for the presence of intrinsically disordered proteins (IDPs). IDPs, despite lacking a rigid three-dimensional structure, maintain biological functionality and could shed light on the molecular interactions within tears. Methods: We analyzed a dataset of 1475 proteins identified in the tear film of three healthy subjects. We employed several computational tools, including the Compositional Profiler, Rapid Intrinsic Disorder Analysis Online, Search Tool for the Retrieval of Interacting Genes, and Database of Disordered Protein Predictors to evaluate the intrinsic disorder, protein interactions, and functional characterization of the disordered regions within this proteome. Results: Our analysis showed a notable inclination toward intrinsic disorder. Two out of 10 order-promoting residues and five out of 10 disorder-promoting residues were found enriched. Using the Predictor of Natural Disordered Regions (PONDR) VSL2 output, 95% of these proteins were classified as highly or moderately disordered. We revealed an extensive protein-protein interaction network with significant interaction enrichment. The most disordered proteins exhibited higher disorder binding sites and diverse posttranslational modifications compared to the most ordered ones. Conclusions: To the best of our knowledge, our study is the first comprehensive analysis of intrinsic disorder in the human tear film proteome, and it revealed an abundance of IDPs and their role in protein function and interaction networks. These findings suggest that variations in the intrinsic disorder of a tear film could be impacted by systemic and ocular conditions, offering promising avenues for disease biomarker identification and drug target development. Further research is needed to understand the implications of these findings in human health and disease.


Subject(s)
Proteome , Humans , Proteome/metabolism , Binding Sites , Protein Conformation
4.
Int J Biol Macromol ; 250: 126027, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37506796

ABSTRACT

BACKGROUND: Class 2 uveal melanomas are associated with the inactivation of the BRCA1 ((breast cancer type 1 susceptibility protein)-associated protein 1 (BAP1)) gene. Inactivation of BAP1 promotes the upregulation of vitamin K-dependent protein S (PROS1), which interacts with the tyrosine-protein kinase Mer (MERTK) receptor on M2 macrophages to induce an immunosuppressive environment. METHODS: We simulated the interaction of PROS1 with MERTK with ColabFold. We evaluated PROS1 and MERTK for the presence of intrinsically disordered protein regions (IDPRs) and disorder-to-order (DOT) regions to understand their protein-protein interaction (PPI). We first evaluated the structure of each protein with AlphaFold. We then analyzed specific sequence-based features of the PROS1 and MERTK with a suite of bioinformatics tools. RESULTS: With high-resolution, moderate confidence, we successfully modeled the interaction between PROS1 and MERTK (predicted local distance difference test score (pDLLT) = 70.68). Our structural analysis qualitatively demonstrated IDPRs (i.e., spaghetti-like entities) in PROS1 and MERK. PROS1 was 23.37 % disordered, and MERTK was 23.09 % disordered, classifying them as moderately disordered and flexible proteins. PROS1 was significantly enriched in cysteine, the most order-promoting residue (p-value <0.05). Our IUPred analysis demonstrated that there are two disorder-to-order transition (DOT) regions in PROS1. MERTK was significantly enriched in proline, the most disorder-promoting residue (p-value <0.05), but did not contain DOT regions. Our STRING analysis demonstrated that the PPI network between PROS1 and MERTK is more complex than their assumed one-to-one binding (p-value <2.0 × 10-6). CONCLUSION: Our findings present a novel prediction for the interaction between PROS1 and MERTK. Our findings show that PROS1 and MERTK contain elements of intrinsic disorder. PROS1 has two DOT regions that are attractive immunotherapy targets. We recommend that IDPRs and DOT regions found in PROS1 and MERTK should be considered when developing immunotherapies targeting this PPI.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Melanoma/genetics , Uveal Neoplasms/genetics , Carrier Proteins/metabolism , Protein S/genetics , Protein S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...