Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 25(1): e0012123, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661400

ABSTRACT

Interactive classroom activities are an effective way to reinforce knowledge and promote student engagement. In this paper, we introduce the Pathogenesis Card Game (PCG), an innovative card game that engages students in a battle between microbial pathogens and the host immune system. Each student is given a set of cards that consist of either common host defenses or common pathogen evasion strategies. In pairs, students play a host defense card versus a pathogenesis card. Host defense cards include neutralize (antibody production), eat (phagocytosis), and destroy (degranulation). Pathogenesis cards present evasive strategies including mimic (molecular mimicry), escape (hemolysin production), hide (polysaccharide capsule), block (antioxidant defense), cut (protease secretion), and disguise (antigenic variation). Students develop a mastery of microbial pathogenesis through active gameplay by deliberating the outcome of each unique host-pathogen interaction. Furthermore, they learn the role of cells in the immune system and how pathogens can evade these immune defenses. PCG was piloted in a 300-level introductory microbiology course for 22 undergraduate students, comprising primarily biology and nursing majors. Both quantitative and qualitative student evaluations of the activity strongly suggest that PCG is an engaging, effective, and useful way to teach microbial pathogenesis. This activity provides a 60-minute lesson plan and corresponding materials that can be used to facilitate the introduction of pathogenesis to a typical undergraduate microbiology course. PCG offers instructors a framework to teach microbial pathogenesis and gives students the opportunity to construct their own knowledge about pathogen immune evasion in an engaging and interactive way.

2.
Nat Commun ; 13(1): 5652, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163114

ABSTRACT

Magnetotactic bacteria are a diverse group of microorganisms that use intracellular chains of ferrimagnetic nanocrystals, produced within magnetosome organelles, to align and navigate along the geomagnetic field. Several conserved genes for magnetosome formation have been described, but the mechanisms leading to distinct species-specific magnetosome chain configurations remain unclear. Here, we show that the fragmented nature of magnetosome chains in Magnetospirillum magneticum AMB-1 is controlled by genes mcaA and mcaB. McaA recognizes the positive curvature of the inner cell membrane, while McaB localizes to magnetosomes. Along with the MamK actin-like cytoskeleton, McaA and McaB create space for addition of new magnetosomes in between pre-existing magnetosomes. Phylogenetic analyses suggest that McaA and McaB homologs are widespread among magnetotactic bacteria and may represent an ancient strategy for magnetosome positioning.


Subject(s)
Magnetosomes , Magnetospirillum , Actins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Magnetic Phenomena , Magnetosomes/genetics , Magnetospirillum/genetics , Magnetospirillum/metabolism , Phylogeny
3.
DNA Cell Biol ; 41(1): 58-63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34967684

ABSTRACT

The burning of fossil fuels to meet a growing demand for energy has created a climate crisis that threatens Earth's fragile ecosystems. While most undergraduate students are familiar with solar and wind energy as sustainable alternatives to fossil fuels, many are not aware of a climate solution right beneath their feet-soil-dwelling microbes! Microbial fuel cells (MFCs) harness energy from the metabolic activity of microbes in the soil to generate electricity. Recently, the coronavirus disease 2019 (COVID-19) pandemic transformed the traditional microbiology teaching laboratory into take-home laboratory kits and online modes of delivery, which could accommodate distance learning. This laboratory exercise combined both virtual laboratory simulations and a commercially available MFC kit to challenge undergraduate students to apply fundamental principles in microbiology to real-world climate solutions.


Subject(s)
Climate Change , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...