Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 97(3): 256-267, 2017 03.
Article in English | MEDLINE | ID: mdl-28165468

ABSTRACT

Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved caspase-9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase-3, -8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its glycophosphatidylinositol anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1-/-) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1-/- mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis.


Subject(s)
Apoptosis/physiology , Fibroblasts/metabolism , Lung Injury/metabolism , Membrane Microdomains/metabolism , Thy-1 Antigens/metabolism , fas Receptor/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Bleomycin , Caspase 9/metabolism , Cell Line , Embryo, Mammalian/cytology , Fas Ligand Protein/pharmacology , Fibroblasts/drug effects , Immunoblotting , Lung Injury/chemically induced , Lung Injury/prevention & control , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/prevention & control , Rats , Signal Transduction/drug effects , Signal Transduction/genetics , Staurosporine/pharmacology , Thy-1 Antigens/genetics , bcl-X Protein/metabolism
2.
Am J Pathol ; 186(5): 1066-77, 2016 05.
Article in English | MEDLINE | ID: mdl-27021937

ABSTRACT

Fibrogenesis involves a dynamic interplay between factors that promote the biosynthesis and deposition of extracellular matrix along with pathways that degrade the extracellular matrix and eliminate the primary effector cells. Opposing the often held perception that fibrotic tissue is permanent, animal studies and clinical data now demonstrate the highly plastic nature of organ fibrosis that can, under certain circumstances, regress. This review describes the current understanding of the mechanisms whereby the lung is known to resolve fibrosis focusing on degradation of the extracellular matrix, removal of myofibroblasts, and the role of inflammatory cells. Although there are significant gaps in understanding lung fibrosis resolution, accelerated improvements in biotechnology and bioinformatics are expected to improve the understanding of these mechanisms and have high potential to lead to novel and effective restorative therapies in the treatment not only of pulmonary fibrosis, but also of a wide-ranging spectrum of chronic disorders.


Subject(s)
Extracellular Matrix/metabolism , Pulmonary Fibrosis/physiopathology , Animals , Collagen/physiology , Enzymes/physiology , Extracellular Matrix/physiology , Humans , Lysosomes/metabolism , Mice , Models, Animal , Proteolysis , Pulmonary Fibrosis/metabolism
3.
BMC Med Genet ; 15: 5, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24405814

ABSTRACT

BACKGROUND: Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. METHODS AND RESULTS: Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0-6 copies per diploid genome (pdg) in Peru, between 0-12 pdg in !Xhosa samples and between 0-10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). CONCLUSIONS: The case-control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.


Subject(s)
Chemokines, CC/genetics , Gene Dosage , Genetic Predisposition to Disease/genetics , Receptors, CCR5/genetics , Tuberculosis/genetics , Adult , Chemokine CCL4/genetics , Child , DNA Copy Number Variations , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics
4.
PLoS One ; 7(11): e49651, 2012.
Article in English | MEDLINE | ID: mdl-23185395

ABSTRACT

Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis/genetics , Tuberculosis/microbiology , Adult , Aged , Alleles , China , Epidemics , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Models, Genetic , Mycobacterium tuberculosis/classification , Peru , Polymorphism, Single Nucleotide , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...