Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004733

ABSTRACT

Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 tool was used for assignation to genomospecies B. mosaicus (34), B. cereus s.s (29) and B. toyonensis (2), as well as virulence factors and toxin profiling. None of them carried any capsule or anthrax-toxin genes. All harbored the non-hemolytic toxin nheABC and sphygomyelinase spH genes, whereas 41 (63%), 30 (46%), 11 (17%) and 6 (9%) isolates harbored cytK-2, hblABCD, cesABCD and at least one insecticidal toxin gene, respectively. Matrix-assisted laser desorption ionization-time of flight mass spectrometry confirmed the production of cereulide (ces genes). Phylogeny inferred from single-nucleotide polymorphisms positioned isolates relative to the B. anthracis lineage. One isolate (BC38B) was of particular interest as it appeared to be the closest B. anthracis neighbor described so far. It harbored a large plasmid similar to other previously described B. cereus s.l. megaplasmids and at a lower extent to pXO1. Whereas bacterial collection is enriched, these high-quality public genetic data offer additional knowledge for better risk assessment using future NGS-based technologies of detection.

2.
Appl Biosaf ; 27(1): 15-22, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-36032319

ABSTRACT

Aim: This study aimed to validate the efficacy of hydrogen peroxide vapor (HPV) decontamination technology set up in a biosafety level 3 (BSL-3) laboratory on surrogates and hazard group 3 (HG3) agents. Methods and Results: The HPV decontamination system (Bioquell) was assessed with both qualitative and quantitative methods on (1) spore surrogates (Geobacillus stearothermophilus, Bacillus atrophaeus, and Bacillus thuringiensis) in the BSL-3 laboratory and in the material airlock and on (2) HG3 agents (Bacillus anthracis; SARS-CoV-2, Venezuelan equine encephalitis virus [VEE], and Vaccinia virus) in the BSL-3 laboratory. Other HG3 bacteria likely to be handled in the BSL-3 laboratory (Yersinia pestis, Burkholderia mallei, Brucella melitensis, and Francisella tularensis) were excluded from the HPV decontamination assays as preliminary viability tests demonstrated the total inactivation of these agents after 48 h drying on different materials. Conclusions: The efficacy of HPV decontamination was validated with a reduction in viability of 5-7 log10 for the spores (surrogates and B. anthracis), and for the enveloped RNA viruses. Vaccinia showed a higher resistance to the decontamination process, being dependent on the biological indicator location in the BSL-3 laboratory.

3.
Microbiol Spectr ; 9(1): e0033321, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34287031

ABSTRACT

We studied the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under different simulated outdoor conditions by changing the temperature (20°C and 35°C), the illuminance (darkness, 10 klx, and 56 klx), and/or the cleanness of the surfaces at 50% relative humidity (RH). In darkness, the loss of viability of the virus on stainless steel is temperature dependent, but this is hidden by the effect of the sunlight from the first minutes of exposure. The virus shows a sensitivity to sunlight proportional to the illuminance intensity of the sunlight. The presence of interfering substances has a moderate effect on virus viability even with an elevated illuminance. Thus, SARS-CoV-2 is rapidly inactivated by simulated sunlight in the presence or absence of high levels of interfering substances at 20°C or 35°C and 50% relative humidity. IMPORTANCE Clinical matrix contains high levels of interfering substances. This study is the first to reveal that the presence of high levels of interfering substances had little impact on the persistence of SARS-CoV-2 on stainless steel following exposure to simulated sunlight. Thus, SARS-CoV-2 should be rapidly inactivated in outdoor environments in the presence or absence of interfering substances. Our results indicate that transmission of SARS-CoV-2 is unlikely to occur through outdoor surfaces, dependent on illuminance intensity. Moreover, most studies are interested in lineage S of SARS-CoV-2. In our experiments, we studied the stability of L-type strains, which comprise the majority of strains isolated from worldwide patients. Nevertheless, the effect of sunlight seems to be similar regardless of the strain studied, suggesting that the greater spread of certain variants is not correlated with better survival in outdoor conditions.


Subject(s)
Microbial Viability/radiation effects , SARS-CoV-2/radiation effects , Sunlight , Virus Inactivation/radiation effects , COVID-19/prevention & control , COVID-19/transmission , Decontamination , Humans , Kinetics , SARS-CoV-2/growth & development , Surface Properties , Temperature
4.
Apoptosis ; 11(9): 1545-59, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16738803

ABSTRACT

In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions.


Subject(s)
Apoptosis/drug effects , Caspases/metabolism , Cell Membrane Permeability , Mitochondria/metabolism , Mustard Gas/toxicity , Respiratory Mucosa/drug effects , Animals , Azoles/pharmacology , Cell Adhesion/drug effects , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Cells, Cultured , Cyclosporine/pharmacology , HeLa Cells , Humans , Isoindoles , Mechlorethamine/toxicity , Melatonin/pharmacology , Mice , Models, Biological , Multiprotein Complexes/metabolism , Organoselenium Compounds/pharmacology , Proto-Oncogene Proteins c-bcl-2/physiology , Respiratory Mucosa/metabolism , Tumor Suppressor Protein p53/physiology
5.
Am J Physiol Lung Cell Mol Physiol ; 289(1): L67-74, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15778244

ABSTRACT

Respiratory tract lesions induced by the chemical warfare agent sulfur mustard (SM) are characterized by epithelial damages associated with inflammatory cell infiltration. Here we evaluated the imbalance between gelatinase and tissue inhibitors of metalloproteinases (TIMPs), and we tested pretreatment with the protease inhibitor doxycycline. Guinea pigs were intoxicated intratracheally with SM and evaluated 24 h after exposure. Matrix metalloproteinase (MMP) gelatinase activity of bronchial lavage (BL) fluid from SM-exposed guinea pigs was high compared with controls, as shown by both zymography and biotinylated substrate degradation, whereas TIMP-1 and -2 levels by immunoblotting were similar. Extensive areas of lysis were evidenced by in situ zymography, indicating imbalance between gelatinases and inhibitors towards net proteolytic activity. Doxycycline pretreatment resulted in 1) decreased gelatinase activity (zymography, free gelatinase activity assay, and in situ zymography); 2) decreased inflammation (BL fluid cellularity and protein level); and 3) dramatic decrease in histological epithelial lesions. Our results suggest inadequate levels of TIMP to counteract increased gelatinase activity and further support a role for MMP gelatinases in SM-induced respiratory lesions. They also suggest that doxycycline may hold promise as a therapeutic tool.


Subject(s)
Chemical Warfare Agents/toxicity , Doxycycline/administration & dosage , Mustard Gas/toxicity , Protease Inhibitors/administration & dosage , Respiratory System/enzymology , Animals , Anti-Bacterial Agents/administration & dosage , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gelatinases/metabolism , Guinea Pigs , Inflammation/chemically induced , Inflammation/enzymology , Inflammation/pathology , Male , Respiratory System/pathology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
6.
Pharmacol Biochem Behav ; 80(1): 53-61, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15652380

ABSTRACT

We investigated the contributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition to the respiratory dysfunction produced by organophosphates in mice which were adapted or not to low AChE activity. Effects of acute selective inhibition of AChE and BChE on ventilation measured by whole-body plethysmography were compared in mice with either normal AChE activity (wild-type), or mice adapted to a null AChE activity (homozygotes for AChE gene deletion) or adapted to an intermediate level of activity (heterozygotes). In wild-type mice acute reduction of AChE by Huperzine A (1 mg/kg) to the level found in asymptomatic heterozygotes, induced tremors but no respiratory depression, whereas the same dose of Huperzine in heterozygote animals further reduced AChE activity, increased tidal volume (V(T)) and decreased breathing frequency (f(R)). A lethal dose of Huperzine in wild-type mice augmented these respiratory effects, but was ineffective in homozygotes. BChE inhibition by bambuterol was ineffective in wild-type mice and heterozygotes, decreased V(T) in homozygotes adapted to null AChE activity but increased V(T) in wild-type mice acutely treated with Huperzine, also aggravating the cholinergic syndrome. We conclude that: (1) Huperzine does not perturb respiration at a dose inhibiting 40% of AChE, and at a lethal dose does not affect any other enzyme important for respiration; (2) Respiratory function is more sensitive to anticholinesterases in heterozygotes than in wild-type mice; (3) BChE may play distinct roles in respiratory function, because its inhibition has opposite effects on tidal volume depending on whether the mouse has adapted to null AChE or whether AChE has been lowered acutely; (4) BChE inhibition may contribute to the respiratory toxicity of organophosphates.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Respiration/drug effects , Terbutaline/analogs & derivatives , Acetylcholinesterase/deficiency , Acetylcholinesterase/genetics , Animals , Female , Male , Mice , Mice, Knockout , Terbutaline/pharmacology
7.
Eur J Neurosci ; 18(6): 1419-27, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14511322

ABSTRACT

Cholinergic neurotransmission ensures muscle contraction and plays a role in the regulation of respiratory pattern in the brainstem. Inactivation of acetylcholinesterase (AChE) by organophosphates produces respiratory failure but AChE knockout mice survive to adulthood. Respiratory adaptation mechanisms which ensure survival of these mice were examined in vivo by whole body plethysmography and in vitro in the neonatal isolated brainstem preparation. AChE-/- mice presented no AChE activity but unaffected butyrylcholinesterase (BChE) activity. In vivo, bambuterol (50-500 microg/kg s.c.) decreased BChE activity peripherally but not in brain tissue and induced apnea and death in adult and neonate AChE-/- mice without affecting littermate AChE+/+ and +/- animals. In vitro, bath-applied bambuterol (1-100 microm) and tetraisopropylpyrophosphoramide (10-100 microm) decreased BChE activity in the brainstem but did not perturb central respiratory activity recorded from spinal nerve rootlets. In vitro, the cholinergic agonists muscarine (50-100 microm) and nicotine (0.5-10 microm) induced tonic activity in respiratory motoneurons and increased the frequency of inspiratory bursts in AChE+/+ and +/- animals. These effects were greatly attenuated in AChE-/- animals. The results suggest that, in mice lacking AChE, (i) BChE becomes essential for survival peripherally but plays no critical role in central rhythm-generating structures and (ii) a major adaptive mechanism for respiratory survival is the down-regulated response of central respiratory-related neurons and motoneurons to muscarinic and nicotinic agonists.


Subject(s)
Acetylcholinesterase/metabolism , Brain Stem/physiopathology , Respiration , Terbutaline/analogs & derivatives , Acetylcholinesterase/blood , Acetylcholinesterase/deficiency , Acetylcholinesterase/genetics , Action Potentials/drug effects , Animals , Animals, Newborn , Apnea/physiopathology , Brain/drug effects , Brain/enzymology , Bronchodilator Agents/pharmacology , Butyrylcholinesterase/blood , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Female , Genotype , In Vitro Techniques , Male , Mice , Mice, Knockout , Muscarine/pharmacology , Muscarinic Agonists/pharmacology , Muscles/drug effects , Muscles/enzymology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Plethysmography/instrumentation , Plethysmography/methods , Pulmonary Ventilation/drug effects , Respiration/drug effects , Terbutaline/pharmacology , Tetraisopropylpyrophosphamide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...