Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 340: 111967, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154578

ABSTRACT

Bacterial leaf blight is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which causes severe crop loss in rice. The molecular mechanism that initiates defense against such pathogens remains unexplored. Reports have suggested crucial role of several miRNAs in regulating immune responses in plants. Argonaute (AGO) proteins have been implicated in imparting immunity against pathogens by using small RNAs as guide molecules. Here, we show that phosphorylation of rice AGO1a by MAP kinases is required for miRNA expression regulation during Xoo infection. AGO1a is induced in response to pathogen infection and is under the control of SA signaling pathway. The pathogen responsive MAP kinases MPK3, MPK4 and MPK6, interact with AGO1a in planta and can phosphorylate the protein in vitro. Overexpression of AGO1a extends disease resistance against Xoo in rice and leads to a higher accumulation of miRNAs. Conversely, overexpression of a non phosphorylatable mutant protein aggravates disease susceptibility and remarkably suppresses the miRNA expression levels. At a molecular level, phosphorylation of AGO1a by MAP kinase is required for increased accumulation of miRNAs during pathogen challenge. Taken together, the data suggests that OsAGO1a is a direct phosphorylation target of MAP kinases and this phosphorylation is crucial for its role in imparting disease resistance.


Subject(s)
MicroRNAs , Oryza , Xanthomonas , Phosphorylation , Disease Resistance/genetics , Oryza/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Xanthomonas/metabolism , Plant Diseases/microbiology
2.
Plant Cell Environ ; 45(2): 279-295, 2022 02.
Article in English | MEDLINE | ID: mdl-34971465

ABSTRACT

During the course of evolution, different ecotypes of rice (Oryza sativa L.) have evolved distinct strategies to cope with submergence stress. Such contrasting responses are mediated by plant hormones that are principle regulators of growth, development and responses to various biotic and abiotic stresses. These hormones act cooperatively and show extensive crosstalk which is mediated by key regulatory genes that serve as nodes of molecular communication. The presence or absence of such genes leads to significant changes in hormone signalling pathways and hence, governs the type of response that the plant will exhibit. As flooding is one of the leading causes of crop loss across all the major rice-producing countries, it is crucial to deeply understand the molecular nexus governing the response to submergence to produce flood resilient varieties. This review focuses on the hormonal signalling pathways that mediate two contrasting responses of the rice plant to submergence stress namely, rapid internode elongation to escape flood waters and quiescence response that enables the plant to survive under complete submergence. The significance of several key genes such as Sub1A-1, SLR1, SD1 and SK1/SK2, in defining the ultimate response to submergence has also been discussed.


Subject(s)
Oryza/physiology , Plant Dormancy , Plant Growth Regulators/physiology , Signal Transduction , Stress, Physiological , Floods
3.
Protoplasma ; 256(4): 997-1011, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30805719

ABSTRACT

Exhaustive studies on mitogen-activated protein kinase (MAPK) have reported the importance in regulating a variety of responses during plant growth and development. In particular, the potential MAPK genes, MPK3 and MPK6, seem to regulate a plethora of responses, conferring tolerance to varied abiotic, biotic, and developmental stimuli. This makes both MPK3 and MPK6 potential targets for further studies. It would be an important concern to overexpress and knock out these pivotal proteins and then, in turn, to monitor the plant response which is expected to correlate action of a gene to a trait in cellular and organismal contexts. However, overexpression of MAPK genes has remained a puzzle in plants. In the present study, we report the generation of stable transgenic lines overexpressing OsMPK3 in indica and japonica cultivars and OsMPK6 in japonica cultivar under the control of an inducible promoter. We also establish the crucial steps and troubleshooting for each of the indicated rice transformation medium components. Later, we study the potential role of these MAPKs in high-throughput analysis of root system architectural (RSA) traits. It was observed that OsMPK6 overexpression lines had a more robust and spread out root architectural system while OsMPK3 overexpression lines had a typical bushy phenotype.


Subject(s)
Mitogen-Activated Protein Kinase Kinases/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Roots/physiology , Plants, Genetically Modified , Culture Media , Cytokinins/metabolism , Dexamethasone/pharmacology , Gene Expression Regulation, Plant , Gene Transfer Techniques , Indoleacetic Acids/metabolism , Mitogen-Activated Protein Kinase Kinases/biosynthesis , Mitogen-Activated Protein Kinase Kinases/metabolism , Oryza/drug effects , Oryza/physiology , Plant Proteins/metabolism , Promoter Regions, Genetic , Seeds/genetics , Seeds/growth & development , Transformation, Genetic
4.
Front Plant Sci ; 9: 12, 2018.
Article in English | MEDLINE | ID: mdl-29459874

ABSTRACT

Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...