Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5658-5662, 2021 11.
Article in English | MEDLINE | ID: mdl-34892406

ABSTRACT

Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions. BP is difficult to continuously monitor using a sphygmomanometer (i.e. a blood pressure cuff), especially in everyday-setting. However, other health signals which can be easily and continuously acquired, such as photoplethysmography (PPG), show some similarities with the Aortic Pressure waveform. Based on these similarities, in recent years several methods were proposed to predict BP from the PPG signal. Building on these results, we propose an advanced personalized data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals. Different from previous work, the proposed model analyzes the PPG signal in time-domain and automatically extracts the most critical features for this specific application, then uses a variation of recurrent neural networks (RNN) called Long-Short-Term-Memory (LSTM) to map the extracted features to the BP value associated with that time window. Experimental results on two separate standard hospital datasets, yielded absolute errors mean and absolute error standard deviation for systolic and diastolic BP values outperforming prior works.


Subject(s)
Deep Learning , Photoplethysmography , Blood Pressure , Blood Pressure Determination , Sphygmomanometers
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7332-7335, 2021 11.
Article in English | MEDLINE | ID: mdl-34892791

ABSTRACT

Since stress contributes to a broad range of mental and physical health problems, the objective assessment of stress is essential for behavioral and physiological studies. Although several studies have evaluated stress levels in controlled settings, objective stress assessment in everyday settings is still largely under-explored due to challenges arising from confounding contextual factors and limited adherence for self-reports. In this paper, we explore the objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV) captured via low-cost and easy-to-wear photoplethysmography (PPG) sensors that are widely available on newer smart wearable devices. We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling. We captured the stress levels of fourteen volunteers through self-reported questionnaires over periods of between 1-3 months, and explored binary stress detection based on HR and HRV using Machine Learning methods. We observe promising preliminary results given that the dataset is collected in the challenging environments of everyday settings. The binary stress detector is fairly accurate and can detect stressful vs non-stressful samples with a macroF1 score of up to %76. Our study lays the groundwork for more sophisticated labeling strategies that generate context-aware, personalized models that will empower health professionals to provide personalized interventions.


Subject(s)
Photoplethysmography , Wearable Electronic Devices , Heart Rate , Humans , Machine Learning , Self Report
SELECTION OF CITATIONS
SEARCH DETAIL
...