Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Protein J ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009911

ABSTRACT

Coiled-coil domain-containing 124 protein is a multifunctional RNA-binding factor, and it was previously reported to interact with various biomolecular complexes localized at diverse subcellular locations, such as the ribosome, centrosome, midbody, and nucleoli. We aimed to better characterize the subcellular CCDC124 translocation by labelling this protein with a fluorescent tag, followed by laser scanning confocal microscopy methods. As traditional GFP-tagging of small proteins such as CCDC124 often faces limitations like potential structural perturbations of labeled proteins, and interference of the fluorescent-tag with their endogenous cellular functions, we aimed to label CCDC124 with the smallest possible split-GFP associated protein-tagging system (GFP11/GFP1-10) for better characterization of its subcellular localizations and its translocation dynamics. By recombinant DNA techniques we generated CCDC124-constructs labelled with either single of four tandem copies of GFP11 (GFP11 × 1::CCDC124, GFP11 × 4::CCDC124, or CCDC124::GFP11 × 4). We then cotransfected U2OS cells with these split-GFP constructs (GFP11 × 1(or X4)::CCDC124/GFP1-10) and analyzed subcellular localization of CCDC124 protein by laser scanning confocal microscopy. Tagging CCDC124 with four tandem copies of a 16-amino acid short GFP-derived peptide-tag (GFP11 × 4::CCDC124) allowed better characterization of the subcellular localization of CCDC124 protein in our model human bone osteosarcoma (U2OS) cells. Thus, by this novel methodology we successfully identified GFP11 × 4::CCDC124 molecules in G3BP1-overexpression induced stress-granules by live cell protein imaging for the first time. Our findings propose CCDC124 as a novel component of the stress granule which is a membraneless organelle involved in translational shut-down in response to cellular stress.

2.
Turk J Biol ; 48(3): 203-217, 2024.
Article in English | MEDLINE | ID: mdl-39050710

ABSTRACT

Background/aim: LUNGBANK was established as part of Project LUNGMARK, pioneering a biorepository dedicated exclusively to lung cancer research. It employs cutting-edge technologies to streamline the handling of biospecimens, ensuring the acquisition of high-quality samples. This infrastructure is fortified with robust data management capabilities, enabling seamless integration of diverse datasets. LUNGBANK functions not merely as a repository but as a sophisticated platform crucial for advancing lung cancer research, poised to facilitate significant discoveries. Materials and methods: LUNGBANK was meticulously designed to optimize every stage of biospecimen handling, from collection and storage to processing. Rigorous standard operating procedures and stringent quality control measures guarantee the integrity of collected biospecimens. Advanced data management protocols facilitate the efficient integration and analysis of various datasets, enhancing the depth and breadth of research possibilities in lung cancer. Results: LUNGBANK has amassed a comprehensive collection of biospecimens essential for unraveling the intricate molecular mechanisms of lung cancer. The integration of state-of-the-art technologies ensures the acquisition of top-tier data, fostering breakthroughs in translational and histological research. Moreover, the establishment of patient-derived systems by LUNGBANK underscores its pivotal role in personalized medicine approaches. Conclusion: The establishment of LUNGBANK marks a significant milestone in addressing the critical challenges of lung cancer research. By providing researchers with high-quality biospecimens and advanced research tools, LUNGBANK not only supports Project LUNGMARK's objectives but also contributes extensively to the broader landscape of personalized medicine. It promises to enhance our understanding of lung cancer initiation, progression, and therapeutic interventions tailored to individual patient needs, thereby advancing the field towards more effective diagnostic and therapeutic strategies.

3.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411012

ABSTRACT

Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.

4.
Biol Cell ; 116(1): e202300049, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029384

ABSTRACT

BACKGROUND INFORMATION: Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS: By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS: The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE: Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.


Subject(s)
Neoplasms , Nucleophosmin , Humans , Nuclear Proteins/metabolism , Protein Binding , Chromatography, Liquid , HEK293 Cells , Proteomics , Tandem Mass Spectrometry , Ribosomes/metabolism , Neoplasms/metabolism , DNA/metabolism
5.
Cancer Biomark ; 31(2): 149-164, 2021.
Article in English | MEDLINE | ID: mdl-33896821

ABSTRACT

BACKGROUND: Coiled-coil domain containing protein-124 (Ccdc124) is a putative mRNA-binding factor associated with cell division, and ribosome biology. Previous reports mentioned an up-regulation of CCDC124 gene in cancer, and listed its mRNA in a molecular prognostic signature in breast cancer. OBJECTIVES: Establishing RNA-binding characteristics of Ccdc124 for a better molecular functional characterization, and carrying-out retrospective studies in order to evaluate its aberrant expression in human cancer samples from various tissue origins. METHODS: Bioinformatics calculations followed by RIP and RNA-seq experiments were performed to investigate mRNA targets of Ccdc124. Quantitative studies on arrays of cDNAs from different cancers and IHC assays on tissue arrays were used to assess CCDC124 expression levels in cancers. RESULTS: Ccdc124 was characterized as an RNA-binding protein (RBP) interacting with various mRNAs. CCDC124 mRNA levels were high in tumors, with a particular up-regulation in cancers from esophagus, adrenal gland, endometrium, liver, ovary, thyroid, and urinary bladder. IHC assays indicated strong Ccdc124 positivity in endometrial (95.4%), urinary bladder (68.4%), and ovarian cancers (86.8%). CONCLUSION: Ccdc124 is a cytokinesis related RBP interacting with various mRNAs. CCDC124 mRNA over-expression and an accompanied increase in Ccdc124 protein accumulation was reported in cancers, indicating this RBP as a novel cancer cell marker.


Subject(s)
Cell Cycle Proteins/metabolism , Endometrial Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Ovarian Neoplasms/metabolism , Urinary Bladder Neoplasms/metabolism , Cell Cycle Proteins/genetics , Computational Biology/methods , Endometrial Neoplasms/genetics , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Ovarian Neoplasms/genetics , Up-Regulation , Urinary Bladder Neoplasms/genetics
6.
Turk J Med Sci ; 51(2): 490-500, 2021 04 30.
Article in English | MEDLINE | ID: mdl-32892537

ABSTRACT

Background/aim: Macrothrombocytopenia is an autosomal-dominant disorder characterized by increased platelet size and a decreased number of circulating platelets. The membrane skeleton and the link between actin filaments of the skeleton and microtubules, which consist of alpha and beta tubulin [including the tubulin beta-1 chain (TUBB1)] heterodimers, are important for normal platelet morphology, and defects in these systems are associated with macrothrombocytopenia. Materials and methods: In this study, we sequenced the exons of the TUBB1 gene using DNA isolated from the peripheral blood samples of healthy controls (n = 47) and patients with macrothrombocytopenia (n = 37) from Turkey. The TUBB1 expression levels in fractioned blood samples from patients and healthy controls were analyzed by RT-qPCR and Western blot. Microtubule organization of the platelets in the peripheral blood smears of patients, and in mutant TUBB1-transfected HeLa cells, were analyzed by immunofluorescence staining. Results: A new TUBB1 c.803G>T (p.T178T) variant was detected in all of the control and patient samples. Importantly, we found 3 new heterozygous TUBB1 variants predicting amino acid substitutions: G146R (in 1 patient), E123Q (in 1 patient), and T274M (in 4 patients); the latter variant was associated with milder thrombocytopenia in cancer patients treated with paclitaxel. Ectopic expression of TUBB1 T274M/R307H variant in HeLa cells resulted in irregular microtubule organization. Conclusion: Further clinical and functional studies of the newly identified TUBB1 variants may offer important insights into their pathogenicity in macrothrombocytopenia.


Subject(s)
Blood Platelets , Heterozygote , Polymorphism, Single Nucleotide , Thrombocytopenia/genetics , Tubulin/genetics , Adolescent , Adult , Asian People/genetics , Blood Platelets/metabolism , Blood Platelets/pathology , Child , Child, Preschool , Genetic Predisposition to Disease , HeLa Cells , Humans , Male , Microtubules , Tubulin/blood , Turkey , Young Adult
7.
Mol Imaging Radionucl Ther ; 26(Suppl 1): 92-101, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28117294

ABSTRACT

Iodide (I-) is an essential constituent of the thyroid hormones triiodothyronine (T3) and thyroxine (T4), and the iodide concentrating mechanism of the thyroid gland is essential for the synthesis of these hormones. In addition, differential uptake of iodine isotopes (radioiodine) is a key modality for the diagnosis and therapy of thyroid cancer. The sodium dependent iodide transport activity of the thyroid gland is mainly attributed to the functional expression of the Na+/I- Symporter (NIS) localized at the basolateral membrane of thyrocytes. In this paper, we review and summarize current data on molecular characterization, on structure and function of NIS protein, as well as on the transcriptional regulation of NIS encoding gene in the thyroid gland. We also propose that a better and more precise understanding of NIS gene regulation at the molecular level in both healthy and malignant thyroid cells may lead to the identification of small molecule candidates. These could then be translated into clinical practice for better induction and more effective modulation of radioiodine uptake in dedifferentiated thyroid cancer cells and in their distant metastatic lesions.

8.
PLoS One ; 8(7): e69289, 2013.
Article in English | MEDLINE | ID: mdl-23894443

ABSTRACT

Cytokinetic abscission is the cellular process leading to physical separation of two postmitotic sister cells by severing the intercellular bridge. The most noticeable structural component of the intercellular bridge is a transient organelle termed as midbody, localized at a central region marking the site of abscission. Despite its major role in completion of cytokinesis, our understanding of spatiotemporal regulation of midbody assembly is limited. Here, we report the first characterization of coiled-coil domain-containing protein-124 (Ccdc124), a eukaryotic protein conserved from fungi-to-man, which we identified as a novel centrosomal and midbody protein. Knockdown of Ccdc124 in human HeLa cells leads to accumulation of enlarged and multinucleated cells; however, centrosome maturation was not affected. We found that Ccdc124 interacts with the Ras-guanine nucleotide exchange factor 1B (RasGEF1B), establishing a functional link between cytokinesis and activation of localized Rap2 signaling at the midbody. Our data indicate that Ccdc124 is a novel factor operating both for proper progression of late cytokinetic stages in eukaryotes, and for establishment of Rap2 signaling dependent cellular functions proximal to the abscission site.


Subject(s)
Centrosome/metabolism , Cytokinesis/physiology , Intracellular Signaling Peptides and Proteins/metabolism , ras Guanine Nucleotide Exchange Factors/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins , Gene Expression , Gene Knockdown Techniques , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Organ Specificity/genetics , Organelles/metabolism , Protein Binding , Protein Interaction Mapping , Protein Transport , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Telophase/genetics , rap GTP-Binding Proteins/metabolism
9.
Biol Trace Elem Res ; 154(3): 338-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23857380

ABSTRACT

Placental type 3 iodothyronine deiodinase (D3) potentially protects the fetus from the elevated maternal thyroid hormones. Na(+)/I(-) symporter (NIS) is a plasma membrane glycoprotein, which mediates active iodide uptake. Our objectives were to establish the distribution of NIS and D3 gene expressions in the placenta and the amniotic membrane and to investigate the relationship between placental D3 and NIS gene expressions and maternal iodine, selenium, and thyroid hormone status. Thyroid hormones, urinary iodine concentration (UIC), and selenium levels were measured in 49 healthy term pregnant women. NIS and D3 gene expressions were studied with the total mRNA RT-PCR method in tissues from maternal placenta (n = 49), fetal placenta (n = 9), and amniotic membrane (n = 9). NIS and D3 gene expressions were shown in the fetal and maternal sides of the placenta and amniotic membrane. Mean blood selenium level was 66 ± 26.5 µg/l, and median UIC was 143 µg/l. We could not demonstrate any statistically significant relationship of spot UIC and blood selenium with NIS and D3 expression (p > 0.05). Positive correlations were found between NIS and thyroxine-binding globulin (TBG) (r = 0.3, p = 0.042) and between D3 and preoperative glucose levels (r = 0.4, p = 0.006). D3 and NIS genes are expressed in term placenta and amniotic membrane; thus, in addition to placenta, amniotic membrane contributes to regulation of maternofetal iodine and thyroid hormone transmission. Further studies are needed to clarify the relationship between maternal glucose levels and placental D3 expression and between TBG and placental NIS expression.


Subject(s)
Amnion/metabolism , Gene Expression Regulation, Developmental , Iodide Peroxidase/genetics , Placenta/metabolism , Symporters/genetics , Thyroid Hormones/blood , Adult , Amnion/embryology , Female , Gestational Age , Humans , Iodine/metabolism , Iodine/urine , Placenta/embryology , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Selenium/blood , Thyroxine-Binding Globulin/analysis , Thyroxine-Binding Globulin/genetics
10.
PLoS One ; 7(11): e50396, 2012.
Article in English | MEDLINE | ID: mdl-23226274

ABSTRACT

CD81 (TAPA-1) is a ubiquitously expressed tetraspanin protein identified as a component of the B lymphocyte receptor (BCR) and as a receptor for the Hepatitis C Virus. In an effort to identify trans-membrane proteins that interact with the T-cell antigen receptor (TCR), we performed a membrane yeast two hybrid screen and identified CD81 as an interactor of the CD3delta subunit of the TCR. We found that in the absence of CD81, in thymocytes from knockout mice, TCR engagement resulted in stronger signals. These results were recapitulated in T cell lines that express low levels of CD81 through shRNA mediated silencing. Increased signaling did not result from alterations in the levels of TCR on the surface of T lymphocytes. Although CD81 is not essential for normal T lymphocyte development, it plays an important role in regulating TCR and possibly pre-TCR signal transduction by controlling the strength of signaling. CD81 dependent alterations in thymocyte signaling are evident in increased CD5 expression on CD81 deficient double positive (DP) thymocytes. We conclude that CD81 interacts with the T cell receptor to suppress signaling.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction/genetics , Tetraspanin 28/genetics , Animals , CD5 Antigens/genetics , CD5 Antigens/immunology , Cell Communication , Gene Expression , HEK293 Cells , Humans , Lymphocyte Activation , Mice , Mice, Knockout , Plasmids , Protein Binding , RNA, Small Interfering/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , Signal Transduction/immunology , Tetraspanin 28/antagonists & inhibitors , Tetraspanin 28/immunology , Thymocytes/cytology , Thymocytes/metabolism , Transfection , Two-Hybrid System Techniques
11.
Biomed Opt Express ; 3(3): 605-11, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22435105

ABSTRACT

We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

12.
Opt Express ; 19(11): 10986-96, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21643360

ABSTRACT

We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.


Subject(s)
Optics and Photonics , Titanium/chemistry , Acoustics , Alloys , Biocompatible Materials , Cell Adhesion , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Equipment Design , Humans , Lasers , Materials Testing , Microscopy, Electron, Scanning/methods , Surface Properties , Ytterbium/chemistry
13.
PLoS One ; 5(6): e11288, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20585577

ABSTRACT

BACKGROUND: Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, "normal-like", and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21(Cip1) correlated with senescence in these cell lines. p21(Cip1) knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and "normal-like" tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice. CONCLUSIONS/SIGNIFICANCE: Luminal A and "normal-like" breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.


Subject(s)
Breast Neoplasms/pathology , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Cluster Analysis , Female , Humans , Immunohistochemistry , Receptors, Estrogen/metabolism
14.
Nucleic Acids Res ; 38(10): 3172-85, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20123735

ABSTRACT

Activity of the sodium/iodide symporter (NIS) in lactating breast is essential for iodide (I(-)) accumulation in milk. Significant NIS upregulation was also reported in breast cancer, indicating a potential use of radioiodide treatment. All-trans-retinoic acid (tRA) is a potent ligand that enhances NIS expression in a subset of breast cancer cell lines and in experimental breast cancer models. Indirect tRA stimulation of NIS in breast cancer cells is very well documented; however, direct upregulation by tRA-activated nuclear receptors has not been identified yet. Aiming to uncover cis-acting elements directly regulating NIS expression, we screened evolutionary-conserved non-coding genomic sequences for responsiveness to tRA in MCF-7. Here, we report that a potent enhancer in the first intron of NIS mediates direct regulation by tRA-stimulated nuclear receptors. In vitro as well as in vivo DNA-protein interaction assays revealed direct association between retinoic acid receptor-alpha (RARalpha) and retinoid-X-receptor (RXR) with this enhancer. Moreover, using chromatin immunoprecipitation (ChIP) we uncovered early events of NIS transcription in response to tRA, which require the interaction of several novel intronic tRA responsive elements. These findings indicate a complex interplay between nuclear receptors, RNA Pol-II and multiple intronic RAREs in NIS gene, and they establish a novel mechanistic model for tRA-induced gene transcription.


Subject(s)
Breast Neoplasms/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Introns , Receptors, Retinoic Acid/metabolism , Symporters/genetics , Base Sequence , Breast Neoplasms/metabolism , Cell Line, Tumor , Conserved Sequence , Female , Genomics , Humans , RNA Polymerase II/metabolism , Response Elements , Retinoic Acid Receptor alpha , Retinoid X Receptors/metabolism , Transcription, Genetic , Tretinoin/pharmacology
15.
FEBS J ; 276(16): 4607-16, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19645719

ABSTRACT

The highly conserved RasGEF1 family of proteins contain a C-terminal CDC25-Ras exchange motif domain and an N-terminal RasGEF-N domain, and are of unknown function and specificity. Using purified RasGEF1A and RasGEF1B proteins, as well as Ras family proteins, we established that RasGEF1A and RasGEF1B function as very specific exchange factors for Rap2, a member of the Rap subfamily of Ras-like G-proteins. They do not act on Rap1 or other members of the Ras subfamily. Although Rap2 was implicated in the regulation of cell adhesion, the establishment of cell morphology, and the modulation of synapses in neurons, no specific guanine nucleotide exchange factor for Rap2 was previously identified. Using reciprocal site-directed mutagenesis, we analyzed residues that allow RasGEF1 proteins to discriminate between Rap1 and Rap2, and we were able to identify Phe39 in the switch I region of Rap2 as a specificity residue. Mutation of the corresponding Ser39 in Rap1 changed the specificity and allowed the nucleotide exchange of Rap1(S39F) to be stimulated by RasGEF1B.


Subject(s)
rap GTP-Binding Proteins/metabolism , ras Guanine Nucleotide Exchange Factors/metabolism , Humans , Mutagenesis, Site-Directed , Phenylalanine , Serine , Substrate Specificity , ras Guanine Nucleotide Exchange Factors/genetics
16.
Cancer Biother Radiopharm ; 22(3): 443-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17679169

ABSTRACT

The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on the mRNA expressions of the sodium and iodine (Na/I) symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyroid-stimulating hormone receptor (TSH-R), as well as radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-AZA, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid-stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-AZA increased TPO mRNA levels by 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels and made no change on other thyroid-specific genes that were investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important difference in the other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both the cell lines. Furthermore, in short-term treatment, ATRA repressed the NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any changes in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). In our study, we showed an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.


Subject(s)
Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Iodine Radioisotopes/pharmacokinetics , Proteins/genetics , Thyroid Gland/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Aged , Apoptosis/radiation effects , Azacitidine/pharmacology , Cell Line, Tumor , Humans , Hydroxamic Acids/pharmacology , Iodine Radioisotopes/administration & dosage , Iodine Radioisotopes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroid Gland/drug effects , Thyroid Neoplasms/pathology , Time Factors , Tretinoin/pharmacology
17.
Cancer Biother Radiopharm ; 22(2): 281-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17600477

ABSTRACT

The aim of this study was to comparatively investigate the effects of 5-azacytidine-C (5-Aza), trichostatin-A (TSA), and all-trans retinoic acid (ATRA) on mRNA expressions of Na/I symporter (NIS), thyroglobulin (Tg), thyroid peroxidase (TPO), and thyroid stimulating hormone receptor (TSH-R), and radioiodine (RAI) uptake in cancer (B-CPAP) and normal (Nthy-ori 3-1) thyroid cell lines. Cell lines were treated with 10 ng/mL of TSA, 5 microM of 5-Aza, and 1 microM of ATRA, according to the MTT (methyl-thiazol-tetrazolium) test results. Additionally, recombinant thyroid stimulating hormone (rTSH) was also applied, with a selected dose of 100 ng/mL. Following the treatment, NIS, Tg, TPO, and TSH-R mRNA levels were detected by real-time-polymerase chain reaction (RT-PCR) and RAI uptakes were measured by using a well counter as the counts/cell number. 5-Aza increased TSH-R mRNA expression in both of the cell lines and decreased TPO, NIS, and Tg mRNA levels in the cancer cell line. In the normal thyroid cell line, 5-Aza increased TPO mRNA levels 2-fold and made no differences in NIS and Tg mRNA levels. TSA treatment repressed NIS and Tg mRNA levels, and made no differences on other thyroid specific genes investigated in the cancer cell line. In the normal thyroid cell line, TSA increased TSH-R mRNA levels in 72 hours and created no important differences in other genes. ATRA repressed the TSH-R mRNA levels in the normal thyroid cell line and increased the TPO and Tg mRNA levels slightly in both cell lines. Furthermore, in short-term treatment, ATRA repressed NIS gene expression slightly, but in the long term, this repression turned to basal levels. 5-Aza, TSA, and ATRA did not make any differences in RAI uptake in the cancer cell line, but rTSH increased RAI uptake significantly. In the normal thyroid cell line, TSA and ATRA decreased RAI uptake (to 1/10 and 1/2, respectively), but 5-Aza and rTSH increased RAI uptake significantly (2- and 4-fold, respectively). We have shown an increase in TSH-R gene expression and radioiodine uptake with 5-Aza. Further in vitro and in vivo studies are needed to support our findings and the potential clinical use of this agent.


Subject(s)
Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Iodine Radioisotopes/pharmacokinetics , Proteins/genetics , Thyroid Gland/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Aged , Apoptosis/radiation effects , Azacitidine/pharmacology , Cell Line, Tumor , Humans , Hydroxamic Acids/pharmacology , Iodine Radioisotopes/administration & dosage , Iodine Radioisotopes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroid Gland/drug effects , Thyroid Neoplasms/pathology , Time Factors , Tretinoin/pharmacology
18.
Biochem Biophys Res Commun ; 345(4): 1487-96, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16730657

ABSTRACT

The function of sodium iodide symporter (Na(+)/I(-) symporter, or NIS) in mammary epithelial cells is essential for the accumulation of I(-) in milk; the newborn's first source of I(-) for thyroid hormone synthesis. Furthermore, increased mammary gland NIS expression has previously been shown in human breast cancer. Several hormones and factors including all-trans-retinoic acid (tRA) regulate the expression of NIS. In this study, using breast cancer cell lines, we established that tRA-responsive NIS expression is confined to estrogen receptor-alpha (ERalpha) positive cells and we investigated the role of ERalpha in the regulation of NIS expression. We showed that the suppression of endogenous ERalpha by RNA interference downregulates NIS expression in ERalpha positive mammary cells. Besides, in an ERalpha negative cell line, reintroduction of ERalpha resulted in the expression of NIS in a ligand-independent manner. We also identified a novel estrogen-responsive element in the promoter region of NIS that specifically binds ERalpha and mediates ERalpha-dependent activation of transcription. Our results indicate that unliganded ERalpha (apo-ERalpha) contributes to the regulation of NIS gene expression.


Subject(s)
Estrogen Receptor alpha/metabolism , Symporters/genetics , Transcription, Genetic/genetics , Base Sequence , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Estrogen Receptor alpha/genetics , Gene Expression/drug effects , Humans , Ligands , Molecular Sequence Data , Promoter Regions, Genetic/genetics , RNA Interference , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Response Elements/genetics , Retinoic Acid Receptor alpha , Reverse Transcriptase Polymerase Chain Reaction , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...