Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(31): e202300111, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36945747

ABSTRACT

Somatostatin (somatotropin release-inhibiting factor, SRIF) is a growth hormone inhibitory factor in the form of a 14- or 28-amino acid peptide. SRIF affects several physiological functions through its action on five distinct SRIF receptor subtypes (sst1-5). Native SRIF has only limited clinical applications due to its rapid degradation in plasma. To overcome this obstacle, we have developed glycosylated SRIF analogues that possess not only metabolic stability but also high affinity to all five receptor subtypes by attaching human complex-type oligosaccharides. Such glycosylated SRIF analogues with improved pharmacokinetic profiles could be potent and novel therapeutic drugs for SRIF-related diseases in which several SRIF receptor subtypes are closely involved, and also shed light on new indications. Our results show that chemical glycosylation can be a powerful tool for the development of peptide and protein analogues superior to the original molecules with enhanced drug properties.


Subject(s)
Receptors, Somatostatin , Somatostatin , Humans , Receptors, Somatostatin/metabolism , Glycosylation , Somatostatin/metabolism , Polysaccharides
2.
iScience ; 23(7): 101327, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32688284

ABSTRACT

Previous studies have revealed that, at the initial step of carcinogenesis, transformed cells are often eliminated from epithelia via cell competition with the surrounding normal cells. In this study, we performed cell competition-based high-throughput screening for chemical compounds using cultured epithelial cells and confocal microscopy. PLX4720 was identified as a hit compound that promoted apical extrusion of RasV12-transformed cells surrounded by normal epithelial cells. Knockdown/knockout of ZAK, a target of PLX4720, substantially enhanced the apical elimination of RasV12 cells in vitro and in vivo. ZAK negatively modulated the accumulation or activation of multiple cell competition regulators. Moreover, PLX4720 treatment promoted apical elimination of RasV12-transformed cells in vivo and suppressed the formation of potentially precancerous tumors. This is the first report demonstrating that a cell competition-promoting chemical drug facilitates apical elimination of transformed cells in vivo, providing a new dimension in cancer preventive medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...