Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 17(1): 137-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37967720

ABSTRACT

The intestine is home to an intertwined network of epithelial, immune, and neuronal cells as well as the microbiome, with implications for immunity, systemic metabolism, and behavior. While the complexity of this microenvironment has long since been acknowledged, recent technological advances have propelled our understanding to an unprecedented level. Notably, the microbiota and non-immune or structural cells have emerged as important conductors of intestinal immunity, and by contrast, cells of both the innate and adaptive immune systems have demonstrated non-canonical roles in tissue repair and metabolism. This review highlights recent works in the following two streams: non-immune cells of the intestine performing immunological functions; and traditional immune cells exhibiting non-immune functions in the gut.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Immunity, Innate , Intestinal Mucosa
2.
Cancer Res Commun ; 3(8): 1524-1537, 2023 08.
Article in English | MEDLINE | ID: mdl-37575281

ABSTRACT

Solid cancer cells escape the primary tumor mass by transitioning from an epithelial-like state to an invasive migratory state. As they escape, metastatic cancer cells employ interchangeable modes of invasion, transitioning between fibroblast-like mesenchymal movement to amoeboid migration, where cells display a rounded morphology and navigate the extracellular matrix in a protease-independent manner. However, the gene transcripts that orchestrate the switch between epithelial, mesenchymal, and amoeboid states remain incompletely mapped, mainly due to a lack of methodologies that allow the direct comparison of the transcriptomes of spontaneously invasive cancer cells in distinct migratory states. Here, we report a novel single-cell isolation technique that provides detailed three-dimensional data on melanoma growth and invasion, and enables the isolation of live, spontaneously invasive cancer cells with distinct morphologies and invasion parameters. Via the expression of a photoconvertible fluorescent protein, compact epithelial-like cells at the periphery of a melanoma mass, elongated cells in the process of leaving the mass, and rounded amoeboid cells invading away from the mass were tagged, isolated, and subjected to single-cell RNA sequencing. A total of 462 differentially expressed genes were identified, from which two candidate proteins were selected for further pharmacologic perturbation, yielding striking effects on tumor escape and invasion, in line with the predictions from the transcriptomics data. This work describes a novel, adaptable, and readily implementable method for the analysis of the earliest phases of tumor escape and metastasis, and its application to the identification of genes underpinning the invasiveness of malignant melanoma. Significance: This work describes a readily implementable method that allows for the isolation of individual live tumor cells of interest for downstream analyses, and provides the single-cell transcriptomes of melanoma cells at distinct invasive states, both of which open avenues for in-depth investigations into the transcriptional regulation of the earliest phases of metastasis.


Subject(s)
Melanoma , Transcriptome , Humans , Transcriptome/genetics , Neoplasm Invasiveness/genetics , Cell Movement/genetics , Melanoma/genetics , Cell Line, Tumor
3.
J Cell Sci ; 133(5)2020 03 05.
Article in English | MEDLINE | ID: mdl-32041902

ABSTRACT

It has become increasingly evident that T cell functions are subject to translational control in addition to transcriptional regulation. Here, by using live imaging of CD8+ T cells isolated from the Lifeact-EGFP mouse, we show that T cells exhibit a gain in fluorescence intensity following engagement of cognate tumour target cells. The GFP signal increase is governed by Erk1/2-dependent distal T cell receptor (TCR) signalling and its magnitude correlates with IFN-γ and TNF-α production, which are hallmarks of T cell activation. Enhanced fluorescence was due to increased translation of Lifeact-EGFP protein, without an associated increase in its mRNA. Activation-induced gains in fluorescence were also observed in naïve and CD4+ T cells from the Lifeact-EGFP reporter, and were readily detected by both flow cytometry and live cell microscopy. This unique, translationally controlled reporter of effector T cell activation simultaneously enables tracking of cell morphology, F-actin dynamics and activation state in individual migrating T cells. It is a valuable addition to the limited number of reporters of T cell dynamics and activation, and opens the door to studies of translational activity and heterogeneities in functional T cell responses in situ.


Subject(s)
Actin Cytoskeleton , CD8-Positive T-Lymphocytes , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Gene Expression Regulation , Mice
4.
FASEB J ; 34(1): 303-315, 2020 01.
Article in English | MEDLINE | ID: mdl-31914648

ABSTRACT

Mutations in succinate dehydrogenase (SDH) lead to the development of tumors in a restricted subset of cell types, including chromaffin cells and paraganglia. The molecular basis for this specificity is currently unknown. We show that loss of SDH activity in a chromaffin cell model does not perturb complex I function, retaining the ability to oxidize NADH within the electron transport chain. This activity supports continued oxidation of substrates within the tricarboxylic acid (TCA) cycle. However, due to the block in the TCA cycle at SDH, the high glutamine oxidation activity is only maintained through an efflux of succinate. We also show that although the mitochondria of SDH-deficient cells are less active per se, their higher mass per cell results in an overall respiratory rate that is comparable with wild-type cells. Finally, we observed that when their mitochondria are uncoupled, SDH-deficient cells are unable to preserve their viability, suggesting that the mitochondrial metabolic network is unable to compensate when exposed to additional stress. We therefore show that in contrast to models of SDH deficiency based on epithelial cells, a chromaffin cell model retains aspects of metabolic "health," which could form the basis of cell specificity of this rare tumor type.


Subject(s)
Chromaffin Cells/metabolism , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Neoplasms/metabolism , Succinate Dehydrogenase/physiology , Animals , Chromaffin Cells/pathology , Humans , Male , Mice , Mice, Knockout , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mutation , NAD/metabolism , Neoplasms/pathology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...