Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3476-3480, 2022 07.
Article in English | MEDLINE | ID: mdl-36085841

ABSTRACT

Optical tracking systems combined with imaging modalities such as computed tomography and magnetic reso-nance imaging are important parts of image guided surgery systems. By determining the location and orientation of sur-gical tools relative to a patient's reference system, tracking systems assist surgeons during the planning and execution of image guided procedures. Therefore, knowledge of the tracking system-induced error is of great importance. To this end, this study compared one passive and two active optical tracking systems in terms of their Target Registration Error. Two experiments were performed to measure the systems' accuracy, testing the impact of factors such as the size of the measuring volume, length of surgical instruments and environmental conditions with orthopedic procedures in mind. According to the performed experiments, the active systems achieved significantly higher accuracy than the tested passive system, reporting an overall accuracy of 0.063 mm (SD = 0.025) and 0.259 mm (SD = 0.152), respectively.


Subject(s)
Optical Devices , Surgery, Computer-Assisted , Humans , Surgery, Computer-Assisted/methods , Surgical Instruments , Tomography, X-Ray Computed
2.
Int J Comput Assist Radiol Surg ; 16(3): 407-414, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33555563

ABSTRACT

PURPOSE: This study presents a novel surgical navigation tool developed in mixed reality environment for orthopaedic surgery. Joint and skeletal deformities affect all age groups and greatly reduce the range of motion of the joints. These deformities are notoriously difficult to diagnose and to correct through surgery. METHOD: We have developed a surgical tool which integrates surgical instrument tracking and augmented reality through a head mounted display. This allows the surgeon to visualise bones with the illusion of possessing "X-ray" vision. The studies presented below aim to assess the accuracy of the surgical navigation tool in tracking a location at the tip of the surgical instrument in holographic space. RESULTS: Results show that the average accuracy provided by the navigation tool is around 8 mm, and qualitative assessment by the orthopaedic surgeons provided positive feedback in terms of the capabilities for diagnostic use. CONCLUSIONS: More improvements are necessary for the navigation tool to be accurate enough for surgical applications, however, this new tool has the potential to improve diagnostic accuracy and allow for safer and more precise surgeries, as well as provide for better learning conditions for orthopaedic surgeons in training.


Subject(s)
Augmented Reality , Orthopedic Procedures/methods , Orthopedics/methods , Surgery, Computer-Assisted/methods , Algorithms , Hip Joint/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Osteotomy/methods , Pelvis/diagnostic imaging , Phantoms, Imaging , Range of Motion, Articular , Reproducibility of Results
3.
Med Image Anal ; 69: 101946, 2021 04.
Article in English | MEDLINE | ID: mdl-33454603

ABSTRACT

In laparoscopic liver resection, surgeons conventionally rely on anatomical landmarks detected through a laparoscope, preoperative volumetric images and laparoscopic ultrasound to compensate for the challenges of minimally invasive access. Image guidance using optical tracking and registration procedures is a promising tool, although often undermined by its inaccuracy. This study evaluates a novel surgical navigation solution that can compensate for liver deformations using an accurate and effective registration method. The proposed solution relies on a robotic C-arm to perform registration to preoperative CT/MRI image data and allows for intraoperative updates during resection using fluoroscopic images. Navigation is offered both as a 3D liver model with real-time instrument visualization, as well as an augmented reality overlay on the laparoscope camera view. Testing was conducted through a pre-clinical trial which included four porcine models. Accuracy of the navigation system was measured through two evaluation methods: liver surface fiducials reprojection and a comparison between planned and navigated resection margins. Target Registration Error with the fiducials evaluation shows that the accuracy in the vicinity of the lesion was 3.78±1.89 mm. Resection margin evaluations resulted in an overall median accuracy of 4.44 mm with a maximum error of 9.75 mm over the four subjects. The presented solution is accurate enough to be potentially clinically beneficial for surgical guidance in laparoscopic liver surgery.


Subject(s)
Augmented Reality , Laparoscopy , Surgery, Computer-Assisted , Animals , Imaging, Three-Dimensional , Liver/diagnostic imaging , Liver/surgery , Swine
4.
Minim Invasive Ther Allied Technol ; 30(4): 229-238, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32134342

ABSTRACT

PURPOSE: This study aims to evaluate the accuracy of point-based registration (PBR) when used for augmented reality (AR) in laparoscopic liver resection surgery. MATERIAL AND METHODS: The study was conducted in three different scenarios in which the accuracy of sampling targets for PBR decreases: using an assessment phantom with machined divot holes, a patient-specific liver phantom with markers visible in computed tomography (CT) scans and in vivo, relying on the surgeon's anatomical understanding to perform annotations. Target registration error (TRE) and fiducial registration error (FRE) were computed using five randomly selected positions for image-to-patient registration. RESULTS: AR with intra-operative CT scanning showed a mean TRE of 6.9 mm for the machined phantom, 7.9 mm for the patient-specific phantom and 13.4 mm in the in vivo study. CONCLUSIONS: AR showed an increase in both TRE and FRE throughout the experimental studies, proving that AR is not robust to the sampling accuracy of the targets used to compute image-to-patient registration. Moreover, an influence of the size of the volume to be register was observed. Hence, it is advisable to reduce both errors due to annotations and the size of registration volumes, which can cause large errors in AR systems.


Subject(s)
Augmented Reality , Laparoscopy , Surgery, Computer-Assisted , Algorithms , Humans , Imaging, Three-Dimensional , Phantoms, Imaging
5.
Comput Methods Programs Biomed ; 193: 105431, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32283385

ABSTRACT

BACKGROUND AND OBJECTIVE: B-spline interpolation (BSI) is a popular technique in the context of medical imaging due to its adaptability and robustness in 3D object modeling. A field that utilizes BSI is Image Guided Surgery (IGS). IGS provides navigation using medical images, which can be segmented and reconstructed into 3D models, often through BSI. Image registration tasks also use BSI to transform medical imaging data collected before the surgery and intra-operative data collected during the surgery into a common coordinate space. However, such IGS tasks are computationally demanding, especially when applied to 3D medical images, due to the complexity and amount of data involved. Therefore, optimization of IGS algorithms is greatly desirable, for example, to perform image registration tasks intra-operatively and to enable real-time applications. A traditional CPU does not have sufficient computing power to achieve these goals and, thus, it is preferable to rely on GPUs. In this paper, we introduce a novel GPU implementation of BSI to accelerate the calculation of the deformation field in non-rigid image registration algorithms. METHODS: Our BSI implementation on GPUs minimizes the data that needs to be moved between memory and processing cores during loading of the input grid, and leverages the large on-chip GPU register file for reuse of input values. Moreover, we re-formulate our method as trilinear interpolations to reduce computational complexity and increase accuracy. To provide pre-clinical validation of our method and demonstrate its benefits in medical applications, we integrate our improved BSI into a registration workflow for compensation of liver deformation (caused by pneumoperitoneum, i.e., inflation of the abdomen) and evaluate its performance. RESULTS: Our approach improves the performance of BSI by an average of 6.5×  and interpolation accuracy by 2×  compared to three state-of-the-art GPU implementations. Through pre-clinical validation, we demonstrate that our optimized interpolation accelerates a non-rigid image registration algorithm, which is based on the Free Form Deformation (FFD) method, by up to 34%. CONCLUSION: Our study shows that we can achieve significant performance and accuracy gains with our novel parallelization scheme that makes effective use of the GPU resources. We show that our method improves the performance of real medical imaging registration applications used in practice today.


Subject(s)
Computer Graphics , Surgery, Computer-Assisted , Algorithms , Computers , Imaging, Three-Dimensional
6.
Sci Rep ; 9(1): 18687, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822701

ABSTRACT

Conventional surgical navigation systems rely on preoperative imaging to provide guidance. In laparoscopic liver surgery, insufflation of the abdomen (pneumoperitoneum) can cause deformations on the liver, introducing inaccuracies in the correspondence between the preoperative images and the intraoperative reality. This study evaluates the improvements provided by intraoperative imaging for laparoscopic liver surgical navigation, when displayed as augmented reality (AR). Significant differences were found in terms of accuracy of the AR, in favor of intraoperative imaging. In addition, results showed an effect of user-induced error: image-to-patient registration based on annotations performed by clinicians caused 33% more inaccuracy as compared to image-to-patient registration algorithms that do not depend on user annotations. Hence, to achieve accurate surgical navigation for laparoscopic liver surgery, intraoperative imaging is recommendable to compensate for deformation. Moreover, user annotation errors may lead to inaccuracies in registration processes.


Subject(s)
Augmented Reality , Hepatectomy/methods , Laparoscopy/methods , Liver/surgery , Monitoring, Intraoperative/methods , Surgery, Computer-Assisted/methods , Algorithms , Animals , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Operating Rooms , Reproducibility of Results , Swine , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...