Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 706, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851788

ABSTRACT

When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.


Subject(s)
Biodiversity , Drug Resistance, Bacterial , Microbiota , Soil Microbiology , Microbiota/genetics , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Genes, Bacterial , Rivers/microbiology , Anti-Bacterial Agents/pharmacology , Ecosystem
2.
mSphere ; 9(2): e0057323, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38323843

ABSTRACT

River microbial communities regularly act as the first barrier of defense against the spread of antimicrobial resistance genes (ARGs) that enter environmental microbiomes through wastewater. However, how the invasion dynamics of wastewater-borne ARGs into river biofilm communities will shift due to climate change with increasing average and peak temperatures remains unknown. Here, we aimed to elucidate the effects of increasing temperatures on the naturally occurring river biofilm resistome, as well as the invasion success of foreign ARGs entering through wastewater. Natural biofilms were grown in a low-anthropogenic impact river and transferred to artificial laboratory recirculation flume systems operated at three different temperatures (20°C, 25°C, and 30°C). After 1 week of temperature acclimatization, significant increases in the abundance of the naturally occurring ARGs in biofilms were detected at higher temperatures. After this acclimatization period, biofilms were exposed to a single pulse of wastewater, and the invasion dynamics of wastewater-borne ARGs were analyzed over 2 weeks. After 1 day, wastewater-borne ARGs were able to invade the biofilms successfully with no observable effect of temperature on their relative abundance. However, thereafter, ARGs were lost at a far increased rate at 30°C, with ARG levels dropping to the initial natural levels after 14 days. Contrary to the lower temperatures, ARGs were either lost at slower rates or even able to establish themselves in biofilms with stable relative abundances above natural levels. Hence, higher temperatures come with contrary effects on river biofilm resistomes: naturally occurring ARGs increase in abundance, while foreign, invading ARGs are lost at elevated speeds.IMPORTANCEInfections with bacteria that gained resistance to antibiotics are taking millions of lives annually, with the death toll predicted to increase. River microbial communities act as a first defense barrier against the spread of antimicrobial resistance genes (ARGs) that enter the environment through wastewater after enrichment in human and animal microbiomes. The global increase in temperature due to climate change might disrupt this barrier effect by altering microbial community structure and functions. We consequently explored how increasing temperatures alter ARG spread in river microbial communities. At higher temperatures, naturally occurring ARGs increased in relative abundance. However, this coincided with a decreased success rate of invading foreign ARGs from wastewater to establish themselves in the communities. Therefore, to predict the effects of climate change on ARG spread in river microbiomes, it is imperative to consider if the river ecosystem and its resistome are dominated by naturally occurring or invading foreign ARGs.


Subject(s)
Anti-Bacterial Agents , Microbiota , Animals , Humans , Anti-Bacterial Agents/pharmacology , Wastewater , Genes, Bacterial , Temperature , Drug Resistance, Bacterial/genetics , Rivers/microbiology , Biofilms
3.
Antibiotics (Basel) ; 11(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36139992

ABSTRACT

As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9-94.4%), hospital effluents (73.9%), surface waters (8.2-55.3%) and groundwater (35.1-59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6')-Ie-aph(2″), aac(6')-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.

4.
Microbiol Spectr ; 10(2): e0271121, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35234513

ABSTRACT

The spatiotemporal variation of several carbapenemase-encoding genes (CRGs) was investigated in the influent and effluent of municipal WWTPs, with or without hospital sewage input. Correlations among gene abundances, bacterial community composition, and wastewater quality parameters were tested to identify possible predictors of CRGs presence. Also, the possible role of wastewaters in mirroring clinical resistance is discussed. The taxonomic groups and gene abundances showed an even distribution among wastewater types, meaning that hospital sewage does not influence the microbial diversity and the CRG pool. The bacterial community was composed mainly of Proteobacteria, Firmicutes, Actinobacteria, Patescibacteria, and Bacteroidetes. Acinetobacter spp. was the most abundant group and had the majority of operational taxonomic units (OTUs) positively correlated with CRGs. This agrees with recent reports on clinical data. The influent samples were dominated by blaKPC, as opposed to effluent, where blaIMP was dominant. Also, blaIMP was the most frequent CRG family observed to correlate with bacterial taxa, especially with the Mycobacterium genus in effluent samples. Bacterial load, blaNDM, blaKPC, and blaOXA-48 abundances were positively correlated with BOD5, TSS, HEM, Cr, Cu, and Fe concentrations in wastewaters. When influent gene abundance values were converted into population equivalent (PE) data, the highest copies/1 PE were identified for blaKPC and blaOXA-48, agreeing with previous studies regarding clinical isolates. Both hospital and non-hospital-type samples followed a similar temporal trend of CRG incidence, but with differences among gene groups. Colder seasons favored the presence of blaNDM, blaKPC and blaOXA-48, whereas warmer temperatures show increased PE values for blaVIM and blaIMP. IMPORTANCE Wastewater-based epidemiology has recently been recognized as a valuable, cost-effective tool for antimicrobial resistance surveillance. It can help gain insights into the characteristics and distribution of antibiotic resistance elements at a local, national, and even global scale. In this study, we investigated the possible use of municipal wastewaters in the surveillance of clinically relevant carbapenemase-encoding genes (CRGs), seen as critical antibiotic resistance determinants. In this matter, our results highlight positive correlations among CRGs, microbial diversity, and wastewater physical and chemical parameters. Identified predictors can provide valuable data regarding the level of raw and treated wastewater contamination with these important antibiotic resistance genes. Also, wastewater-based gene abundances were used for the first time to observe possible spatiotemporal trends of CRGs incidence in the general population. Therefore, possible hot spots of carbapenem resistance could be easily identified at the community level, surpassing the limitations of health care-associated settings.


Subject(s)
Sewage , Wastewater , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Hospitals , Microbial Sensitivity Tests , Sewage/microbiology
5.
Antibiotics (Basel) ; 10(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805405

ABSTRACT

Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.

SELECTION OF CITATIONS
SEARCH DETAIL
...