Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 272(Pt 2): 132941, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848842

ABSTRACT

Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.


Subject(s)
Biocompatible Materials , Chitosan , Polyesters , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Tissue Engineering/methods , Polyesters/chemistry , Tissue Scaffolds/chemistry , Humans , Biocompatible Materials/chemistry , Animals , Extracellular Matrix/chemistry
2.
Growth Factors ; 41(2): 101-113, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37343121

ABSTRACT

Notably the integration of additives such as growth factors, vitamins, and drugs with scaffolds promoted nerve tissue engineering. This study tried to provide a concise review of all these additives that facilitates nerve regeneration. An attempt was first made to provide information on the main principle of nerve tissue engineering, and then to shed light on the effectiveness of these additives on nerve tissue engineering. Our research has shown that growth factors accelerate cell proliferation and survival, while vitamins play an effective role in cell signalling, differentiation, and tissue growth. They can also act as hormones, antioxidants, and mediators. Drugs also have an excellent and necessary effect on this process by reducing inflammation and immune responses. This review shows that growth factors were more effective than vitamins and drugs in nerve tissue engineering. Nevertheless, vitamins were the most commonly used additive in the production of nerve tissue.


Subject(s)
Nerve Tissue , Tissue Engineering , Tissue Scaffolds , Vitamins/pharmacology , Intercellular Signaling Peptides and Proteins , Vitamin A , Vitamin K , Nerve Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...