Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Animals (Basel) ; 10(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512947

ABSTRACT

Selenium (Se) is able to transform from inorganic to organic forms via many bacterial species. This feature is being considered for delivering more bioavailable selenium compounds such as selenocysteine and selenomethionine for human and animal diet. This study investigated the effects of bacterial selenoprotein versus inorganic Se on the carcass characteristics, breast meat selenium content, antioxidant status, and meat quality of broiler chickens. One hundred and eighty chicks were randomly allotted to five treatments of a basal diet supplemented with no Se, sodium selenite, Enterobacter cloacae Selenium (ADS1-Se), Klebsiella pneumoniae-Selenium (ADS2-Se), and Stenotrophomonas maltophilia-Selenium (ADS18-Se). The results showed that bacterial selenoprotein has the ability to deposit more Se in the breast meat compared to sodium selenite. Both Se sources reduced breast meat drip loss, cooking loss, shear force, and 2-thiobarbituric acid reactive substances (TBARS) significantly. It also increased total antioxidant (TAC) and glutathione peroxidase (GSH-Px) in comparison with the negative control. The highest activity of (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) was found in bacterial selenoprotein. In conclusion, bacterial selenoprotein is more efficient than sodium selenite in increasing the breast meat Se deposition and oxidative capacity of broiler chickens. Therefore, it can be effectively used to produce Se-rich meat as a functional food.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-626562

ABSTRACT

Aims: Lactobacillus sp. has capability of producing an array of bioactive metabolites that exhibit probiotic effects. Therefore, the objective of this study was to determine the cytotoxicity effect of proteinaceous postbiotic metabolites (PPM) produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Methodology and results: L. plantarum I-UL4 was cultivated in yeast extract and modified de Man, Rogosa and Sharpe broth containing Tween 80 (CRMRS+T80) or without Tween-80 (CRMRS-T80). Human breast adenocarcinoma cell (MCF-7) was employed as cancer cell in this study. Cytotoxicity and antiproliferative effects of PPM were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium Bromide assay and Trypan Blue Dye Exclusion assay, whereas Acridine Orange/Propidium Iodide staining was employed to determine the cytotoxicity mechanism. PPM produced in CRMRS+T80 exerted cytotoxicity in a time and dose dependent manner that was selective towards MCF-7 cancer cell. Profound cytotoxicity with the lowest IC50 concentration of 10.83 µg was detected at 72 h of incubation, whereas the most potent antiproliferative effect revealed by the lowest viable cell population was observed at 24 h of incubation. PPM cultivated in CRMRS+T80 induced 80.87% of apoptotic MCF-7 cells at 48 h of incubation. Conclusion, significance and impact of study: PPM of L. plantarum I-UL4 cultivated in different media composition induced different levels of MCF-7 cancer cell death. The percentage of apoptotic MCF-7 cells treated with PPM cultivated in CRMRS+T80 increased significantly (p < 0.05) from 24 to 48 h of incubation. The results obtained in this study have revealed the potential of PPM produced by L. plantarum I-UL4 as human health supplement and as anticancer preventive agent. Keywords: Lactobacillus plantarum I-UL4; cytotoxic effect; proteinaceous postbiotic metabolites; media composition; breast cancer


Subject(s)
Lactobacillus , Probiotics
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-626558

ABSTRACT

Aims: Postbiotic metabolites are metabolic compounds produced by probiotic lactic acid bacteria. These compounds produced by Lactobacillus sp. have been shown to be effective substitutes for in-feed antibiotic in livestock due to their broad inhibitory activity. Therefore, the aim of this study was to determine the effects of various carbon and nitrogen sources on the bacteriocin-inhibitory activity of postbiotic metabolites produced by Lactobacillus plantarum I-UL4. Methodology and results: The effects of various combinations of carbon and nitrogen sources on the bacteriocininhibitory activity (expressed as modified bacteriocin activity, MAU/mL) of postbiotic metabolites produced by L. plantarum I-UL4 were determined in basal media without micronutrients. The combination of glucose (20 g/L) and yeast extract (22 g/L) gave the best bacteriocin-inhibitory activity as compared to other combinations. Maximum bacteriocininhibitory activity of 1440 MAU/mL was achieved when 36.20 g/L of yeast extract was added as the sole nitrogen source in modified de Man, Rogosa and Sharpe (MRS) medium. The glucose concentration was further optimised to enhance the bacteriocin-inhibitory activity of the postbiotic metabolites. Lower bacteriocin-inhibitory activity was observed at 5, 10, 15 and 40 g/L in comparison to 20 g/L of glucose. Conclusion, significance and impact of study: Maximum bacteriocin-inhibitory activity of postbiotic metabolites was achieved at 1440 MAU/mL when 20 g/L of glucose and 36.20 g/L of yeast extract were added as the sole carbon and nitrogen sources respectively in the modified MRS medium. Optimisation of other micronutrients present in MRS media is necessary to further enhance the bacteriocin-inhibitory activity of postbiotic metabolites produced by L. plantarum IUL4.


Subject(s)
Lactobacillus
4.
Gut Pathog ; 6: 23, 2014.
Article in English | MEDLINE | ID: mdl-24991236

ABSTRACT

BACKGROUND: The present study aimed to determine the inhibitory activity of postbiotic produced by L. plantarum using reconstituted media supplemented with different levels of inulin and to select the best combination based on the modified inhibitory activity (MAU/mL) against pathogens. METHODS: Postbiotics were produced by 6 strains of L. plantarum (RG11, RG14, RI11, UL4, TL1 and RS5) using reconstituted media supplemented with different levels of Inulin (0, 0.2, 0.4, 0.6, 0.8, and 1.0) yielding 36 combinations. RESULTS: The combination of postbiotic and inulin had higher inhibitory activity than postbiotic alone against all indicator organisms except Pediococcus acidilactici, and E. coli. The RI11 + 0.8% Inulin, RG14 + 0.8% Inulin and RG14 + 0% Inulin had significantly (p < 0.05) higher MAU/mL against P. acidilactici than other treatments. The RI11 + 0.8% Inulin and RG14 + 0.4% Inulin had a significantly (p < 0.05) higher MAU/mL against VRE. The MAU/mL against L. monocytogenes was greater in RI11 + 1.0% Inulin, RI11 + 0.6% Inulin and RI11 + 0.8% Inulin. The combinations of RS5 + 1.0% Inulin, RS5 + 0.8% Inulin and RS5 + 0.6% Inulin had greater MAU/mL against S. enterica; whereas in E. coli, the inhibitory activity had higher activity that can only be found in RS5 + 0.8% Inulin. CONCLUSION: Combination of postbiotics and inulin which had higher optical density tends to have lower pH which corresponds to increased inhibitory activity against indicator organisms. The results of this study show that postbiotics and inulin supplementation enable to inhibit proliferation of pathogenic bacteria.

5.
ScientificWorldJournal ; 2013: 531397, 2013.
Article in English | MEDLINE | ID: mdl-24198724

ABSTRACT

This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN- γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN- γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens.


Subject(s)
Birnaviridae Infections/veterinary , Fish Oils/administration & dosage , Infectious bursal disease virus , Methionine/administration & dosage , Poultry Diseases/diet therapy , Poultry Diseases/immunology , Animals , Avian Proteins/blood , Birnaviridae Infections/diet therapy , Birnaviridae Infections/immunology , Chickens , Dietary Supplements , Fatty Acids/blood , Fatty Acids, Omega-3/administration & dosage , Immunity, Cellular , Interferon-gamma/blood , Interleukin-2/blood , Leukocyte Count , Male , Poultry Diseases/blood , Serum Globulins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...