Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Surg Res ; 293: 433-442, 2024 01.
Article in English | MEDLINE | ID: mdl-37812877

ABSTRACT

INTRODUCTION: Massive intestinal loss resulting in short bowel syndrome has been linked to intestinal failure associated liver disease. Efforts to elucidate the driving force behind the observed hepatic injury have identified inflammatory mediators, alterations in the microbiome, extent of structural and functional intestinal adaptation, and toxic shifts in the bile acid pool. In the present study, we posit that ileocecal resection interrupts the delivery of these hepatotoxic substances to the liver by physically disrupting the enterohepatic circulation, thereby shielding the liver from exposure to the aforementioned noxious stimuli. METHODS: Mice underwent sham, 50% proximal, or 50% distal small bowel resection (SBR), with or without tauroursodeoxycolic acid supplementation. Enterohepatic signaling and nonsense-mediated ribonucleic acid (RNA) decay were evaluated and correlated with hepatic injury. RESULTS: When compared to 50% proximal SBR, mice that underwent ileocecal resection exhibited reduced hepatic oxidative stress and exhibited a more physiological bile acid profile with increased de novo bile acid synthesis, enhanced colonic bile acid signaling, and reduced hepatic proliferation. Distal intestinal resection promoted an adaptive response including via the nonsense-mediated RNA decay pathway to satisfactorily process injurious messenger RNA and successfully maintain homeostasis. By contrast, this adaptive response was not observed in the proximal SBR group and hepatic injury persisted. CONCLUSIONS: In summary, interruption of enterohepatic circulation via ileocecal resection abrogates the liver's exposure to toxic and inflammatory mediators while promoting physiological adaptations in bile acid metabolism and maintaining existing homeostatic pathways.


Subject(s)
Liver Diseases , RNA , Mice , Animals , RNA/metabolism , Liver/surgery , Liver/metabolism , Liver Diseases/metabolism , Bile Acids and Salts/metabolism , Inflammation Mediators/metabolism
3.
J Surg Case Rep ; 2023(3): rjad078, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896150

ABSTRACT

Congenital malrotation is a pathology nearly exclusive to the infant population. In the rare instance when it is diagnosed in an adult, it is typically associated with a longstanding history of gastrointestinal symptoms. Unfortunately, this unique presentation in an unexpected population has the potential to be confounding, leading to delayed or mismanaged care. Here, we describe an intriguing case of congenital malrotation complicated by midgut volvulus in a 68-year-old woman. Even more curious, the patient did not have a medical history plagued by abdominal complaints. Careful, comprehensive evaluation yielded appropriate surgical management via Ladd's procedure and right hemicolectomy in this complex patient.

4.
J Pediatr Surg ; 58(6): 1074-1078, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36914459

ABSTRACT

BACKGROUND: Massive small bowel resection (SBR) is associated with liver injury and fibrosis. Efforts to elucidate the driving force behind hepatic injury have identified multiple factors, including the generation of toxic bile acid metabolites. METHODS: Sham, 50% proximal, and 50% distal SBR were carried out in C57BL/6 mice to determine the effect of jejunal (proximal SBR) versus ileocecal resection (distal SBR) on bile acid metabolism and liver injury. Tissues were harvested at 2 and 10-week postoperative timepoints. RESULTS: When compared with 50% proximal SBR, mice that underwent distal SBR exhibited less hepatic oxidative stress as verified by decreased mRNA expression of tumor necrosis factor-α (TNFα, p ≤ 0.0001), nicotinamide adenine dinucleotide phosphate oxidase (NOX, p ≤ 0.0001), and glutathione synthetase (GSS, p ≤ 0.05). Distal SBR mice also exhibited a more hydrophilic bile acid profile with reduced abundance of insoluble bile acids (cholic acid (CA), taurodeoxycholic acid (TCA), and taurolithocholic acid (TLCA)), and increased abundance of soluble bile acids (tauroursodeoxycholic acid (TUDCA)). In contrast with proximal SBR, ileocecal resection alters enterohepatic circulation leading to reduced oxidative stress and promotes physiological bile acid metabolism. CONCLUSION: These findings challenge the notion that preservation of the ileocecal region is beneficial in patients with short bowel syndrome. Administration of selected bile acids may present potential therapy to mitigate resection-associated liver injury. LEVEL OF EVIDENCE: III-Case-Control Study.


Subject(s)
Bile Acids and Salts , Liver , Mice , Animals , Case-Control Studies , Mice, Inbred C57BL , Liver/surgery , Liver/metabolism , Enterohepatic Circulation
5.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G165-G176, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35727920

ABSTRACT

The unfolded protein response (UPR) is a complex adaptive signaling pathway activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). ER stress (ERS) triggers a cascade of responses that converge upon C/EBP homologous protein (CHOP) to drive inflammation and apoptosis. Herein, we sought to determine whether liver injury and fibrosis after small bowel resection (SBR) were mediated by a maladaptive hepatic ERS/UPR. C57BL/6 mice underwent 50% proximal SBR or sham operation. Markers of liver injury and UPR/ERS pathways were analyzed. These were compared with experimental groups including dietary fat manipulation, tauroursodeoxycholic acid (TUDCA) treatment, distal SBR, and global CHOP knockout (KO). At 10 wk, proximal SBR had elevated alanine aminotransferase/aspartate aminotransferase (ALT/AST) (P < 0.005) and greater hepatic tumor necrosis factor-α (TNFα) (P = 0.001) and collagen type 1 α1 (COL1A1) (P = 0.02) than shams. SBR livers had increased CHOP and p-eIF2α, but were absent in activating transcription factor 4 (ATF4) protein expression. Low-fat diet (LFD), TUDCA, and distal SBR groups had decreased liver enzymes, inflammation, and fibrosis (P < 0.05). Importantly, they demonstrated reversal of hepatic UPR with diminished CHOP and robust ATF4 signal. CHOP KO-SBR had decreased ALT but not AST compared with wild-type (WT)-SBR (P = 0.01, P = 0.12). There were no differences in TNFα and COL1A1 (P = 0.09, P = 0.50). SBR-induced liver injury, fibrosis is associated with a novel hepatic UPR/ERS response characterized by increased CHOP and decreased ATF4. LFD, TUDCA, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern. Global CHOP KO only partially attenuated liver injury. This underscores the significance of disruptions to the gut/liver axis after SBR and potentiates targets to mitigate the progression of intestinal failure-associated liver disease.NEW & NOTEWORTHY The unfolded protein response (UPR) is a complex signaling cascade that converges upon C/EBP-homologous protein (CHOP). Under conditions of chronic cellular stress, the UPR shifts from homeostatic to proapoptotic leading to inflammation and cell death. Here, we provide evidence that small bowel resection-induced liver injury and fibrosis are mediated by a maladaptive hepatic UPR. Low-fat diet, TUDCA treatment, and ileocecal resection rescued the hepatic phenotype and reversed the UPR pattern.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Tumor Necrosis Factor-alpha , Animals , Apoptosis/genetics , Endoplasmic Reticulum Stress , Fibrosis , Inflammation/metabolism , Liver Cirrhosis , Mice , Mice, Inbred C57BL , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , Unfolded Protein Response
6.
J Surg Res ; 273: 100-109, 2022 05.
Article in English | MEDLINE | ID: mdl-35033819

ABSTRACT

BACKGROUND: Murine ileocecal resection (ICR) has been used to investigate intestinal adaptation. The established model often includes the sacrifice of significant length of the proximal colon. Here, we optimized a highly selective vascular approach to the ICR, with primary jejunal-colic anastomosis yielding maximal colonic preservation. MATERIALS AND METHODS: Forty C57BL/6 mice underwent a highly vascularly selective ICR. The terminal branches of the ileocecal artery are isolated apart from the mesenteric branches supplying the small bowel to be resected. The distal 50% of small bowel and cecum are resected; a primary jejuno-colonic anastomosis is performed. Animals were sacrificed at postoperative weeks 2 (n = 10) and 10 (n = 29). Proximal 50% small bowel resection (SBR) with jejuno-ileal anastomosis was also performed for comparison. RESULTS: The entire colon (with exception of the cecum) was preserved in 100% of animals. Ninety-seven percent of animals survived to postoperative week 10, and all exhibited structural adaptation in the remnant small intestine epithelium. Crypts deepened by 175%, and villi lengthened by 106%, versus 39% and 29% in the proximal SBR cohort, respectively. Colonic proliferation, structural adaptation, and functional adaptation (measured by p-histone 3, luminal-facing apical crypt border size, and sucrase isomaltase, respectively) were increased in ICR compared with proximal SBR. CONCLUSIONS: Highly selective isolation of the cecal vasculature allows for greater colon preservation and yields enhanced remnant intestine epithelial adaptation. ICR is also associated with greater colonic adaptation and unique plasticity toward an intestinal phenotype. These findings underscore major differences between resection sites and offer insights into the critical adaptive mechanisms in response to massive intestinal loss.


Subject(s)
Intestine, Small , Short Bowel Syndrome , Adaptation, Physiological/physiology , Animals , Colon/surgery , Humans , Intestinal Mucosa , Intestine, Small/physiology , Intestine, Small/surgery , Jejunum/surgery , Mice , Mice, Inbred C57BL , Short Bowel Syndrome/surgery
7.
Gut Microbes ; 13(1): 1940792, 2021.
Article in English | MEDLINE | ID: mdl-34264786

ABSTRACT

Surgical removal of the intestine, lifesaving in catastrophic gastrointestinal disorders of infancy, can result in a form of intestinal failure known as short bowel syndrome (SBS). Bloodstream infections (BSIs) are a major challenge in pediatric SBS management. BSIs require frequent antibiotic therapy, with ill-defined consequences for the gut microbiome and childhood health. Here, we combine serial stool collection, shotgun metagenomic sequencing, multivariate statistics and genome-resolved strain-tracking in a cohort of 19 patients with surgically-induced SBS to show that antibiotic-driven intestinal dysbiosis in SBS enriches for persistent intestinal colonization with BSI causative pathogens in SBS. Comparing the gut microbiome composition of SBS patients over the first 4 years of life to 19 age-matched term and 18 preterm controls, we find that SBS gut microbiota diversity and composition was persistently altered compared to controls. Commensals including Ruminococcus, Bifidobacterium, Eubacterium, and Clostridium species were depleted in SBS, while pathobionts (Enterococcus) were enriched. Integrating clinical covariates with gut microbiome composition in pediatric SBS, we identified dietary and antibiotic exposures as the main drivers of these alterations. Moreover, antibiotic resistance genes, specifically broad-spectrum efflux pumps, were at a higher abundance in SBS, while putatively beneficial microbiota functions, including amino acid and vitamin biosynthesis, were depleted. Moreover, using strain-tracking we found that the SBS gut microbiome harbors BSI causing pathogens, which can persist intestinally throughout the first years of life. The association between antibiotic-driven gut dysbiosis and enrichment of intestinal pathobionts isolated from BSI suggests that antibiotic treatment may predispose SBS patients to infection. Persistence of pathobionts and depletion of beneficial microbiota and functionalities in SBS highlights the need for microbiota-targeted interventions to prevent infection and facilitate intestinal adaptation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Dysbiosis/drug therapy , Dysbiosis/etiology , Gastrointestinal Microbiome/drug effects , Sepsis/drug therapy , Sepsis/etiology , Short Bowel Syndrome/complications , Adolescent , Child , Child, Preschool , Cohort Studies , Dysbiosis/microbiology , Female , Humans , Male , Missouri , Short Bowel Syndrome/microbiology
8.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G907-G918, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33729834

ABSTRACT

Intestinal failure-associated liver disease is a major morbidity associated with short bowel syndrome. We sought to determine if the obesity-resistant mouse strain (129S1/SvImJ) conferred protection from liver injury after small bowel resection (SBR). Using a parenteral nutrition-independent model of resection-associated liver injury, C57BL/6J and 129S1/SvImJ mice underwent a 50% proximal SBR or sham operation. At postoperative week 10, hepatic steatosis, fibrosis, and cholestasis were assessed. Hepatic and systemic inflammatory pathways were evaluated using oxidative markers and abundance of tissue macrophages. Potential mechanisms of endotoxin resistance were also explored. Serum lipid levels were elevated in all mouse lines. Hepatic triglyceride levels were no different between mouse strains, but there was an increased accumulation of free fatty acids in the C57BL/6J mice. Histological and serum markers of hepatic fibrosis, steatosis, and cholestasis were significantly elevated in resected C57BL/6J SBR mice as well as oxidative stress markers and macrophage recruitment in both the liver and visceral white fat in C57BL/6J mice compared with sham controls and the 129S1/SvImJ mouse line. Serum endotoxin levels were significantly elevated in C57BL/6J mice with significant elevation of hepatic TLR4 and reduction in PPARα expression levels. Despite high levels of serum lipids, 129S1/SvImJ mice did not develop liver inflammation, fibrosis, or cholestasis after SBR, unlike C57BL/6J mice. These data suggest that the accumulation of hepatic free fatty acids as well as increased endotoxin-driven inflammatory pathways through PPARα and TLR4 contribute to the liver injury seen in C57BL/6J mice with short bowel syndrome.NEW & NOTEWORTHY Unlike C57BL/6 mice, the 129S1/SvImJ strain is resistant to liver inflammation and injury after small bowel resection. These disparate outcomes are likely due to the accumulation of hepatic free fatty acids as well as increased endotoxin-driven inflammatory pathways through PPARα and TLR4 in C57BL/6 mice with short bowel syndrome.


Subject(s)
Liver Diseases/etiology , Liver/metabolism , Short Bowel Syndrome/metabolism , Adipose Tissue, White/metabolism , Animals , Biomarkers/blood , Digestive System Surgical Procedures , Disease Models, Animal , Endotoxins/blood , Fatty Acids, Nonesterified/metabolism , Intestine, Small/surgery , Lipids/blood , Liver Cirrhosis/metabolism , Liver Diseases/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Triglycerides/metabolism
9.
J Surg Res ; 258: 73-81, 2021 02.
Article in English | MEDLINE | ID: mdl-33002664

ABSTRACT

BACKGROUND: Short bowel syndrome resulting from small bowel resection (SBR) is associated with significant morbidity and mortality. Many adverse sequelae including steatohepatitis and bacterial overgrowth are thought to be related to increased bacterial translocation, suggesting alterations in gut permeability. We hypothesized that after intestinal resection, the intestinal barrier is altered via toll-like receptor 4 (TLR4) signaling at the intestinal level. METHODS: B6 and intestinal-specific TLR4 knockout (iTLR4 KO) mice underwent 50% SBR or sham operation. Transcellular permeability was evaluated by measuring goblet cell associated antigen passages via two-photon microscopy. Fluorimetry and electron microscopy evaluation of tight junctions (TJ) were used to assess paracellular permeability. In parallel experiments, single-cell RNA sequencing measured expression of intestinal integral TJ proteins. Western blot and immunohistochemistry confirmed the results of the single-cell RNA sequencing. RESULTS: There were similar number of goblet cell associated antigen passages after both SBR and sham operation (4.5 versus 5.0, P > 0.05). Fluorescein isothiocyanate-dextran uptake into the serum after massive SBR was significantly increased compared with sham mice (2.13 ± 0.39 ng/µL versus 1.62 ± 0.23 ng/µL, P < 0.001). SBR mice demonstrated obscured TJ complexes on electron microscopy. Single-cell RNA sequencing revealed a decrease in TJ protein occludin (21%) after SBR (P < 0.05), confirmed with immunostaining and western blot analysis. The KO of iTLR4 mitigated the alterations in permeability after SBR. CONCLUSIONS: Permeability after SBR is increased via changes at the paracellular level. However, these alterations were prevented in iTLR4 mice. These findings suggest potential protein targets for restoring the intestinal barrier and obviating the adverse sequelae of short bowel syndrome.


Subject(s)
Intestinal Mucosa/metabolism , Short Bowel Syndrome/etiology , Tight Junctions/metabolism , Toll-Like Receptor 4/metabolism , Animals , Mice, Inbred C57BL , Mice, Knockout , Permeability , Short Bowel Syndrome/metabolism , Tight Junctions/ultrastructure , Toll-Like Receptor 4/genetics
10.
J Vasc Surg Cases Innov Tech ; 6(4): 622-625, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33163746

ABSTRACT

The Impella is a percutaneously placed intra-arterial flow pump positioned across the aortic valve for circulatory support. A limitation of the Impella is that it lacks a central wire channel, to maintain intra-arterial wire access when removing the device. Open surgical arterial cutdown is needed for the removal of the Impella CP placed emergently, without the use of preclose sutures. This case review describes an alternative removal method for the aforementioned occasions.

11.
Surg Open Sci ; 2(4): 45-49, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33073225

ABSTRACT

OBJECTIVE: The nation's aging population presents novel perioperative challenges. Potential benefits of operative interventions must be scrutinized in relation to recoverable quality of life. The purpose of this study is to evaluate common risk calculators used for medical decision making in a nonagenarian patient population. METHODS: Retrospective medical record review was performed on patients 90 years or older who underwent operative interventions requiring anesthesia at a large academic medical center between January 1, 2013, and December 31, 2017. GraphPad 8.2.1 was used for statistical analysis. RESULTS: Significant differences were found when data were stratified by age for elective versus emergent cases (P value < .0001), ability to return to baseline function (P value  = .0062), and mortality (P value < .0001). Significant differences were found in emergent and elective cases, ability to return to baseline function, readmissions, and mortality (all P values < .0001) when stratified by American Society of Anesthesiologists score. Ability of patients to return to baseline functionality after intervention was influenced by their preintervention level of functionality (P value = .0008). American College of Surgeons and Portsmouth Physiologic and Operative Severity Score for Enumeration of Mortality and Morbidity risk calculators underestimated the need for rehabilitation and overestimated mortality for this population (all P values < .0001). CONCLUSION: Perioperative cares of the extreme geriatric population are complex and should be approached collaboratively. Rehabilitation and postoperative assistance resources should be assessed and used fully. Input from palliative care teams should be sought appropriately. End-of-life and escalation-of-care discussions should ideally be organized prior to emergent interventions. Frailty and risk calculators should be used and considered for formal implementation into the preoperative workflow.

12.
Am J Physiol Gastrointest Liver Physiol ; 319(1): G36-G42, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32463335

ABSTRACT

After 50% proximal small bowel resection (SBR) in mice, we have demonstrated hepatic steatosis, impaired glucose metabolism without insulin resistance, and increased pancreatic islet area. We sought to determine the consequences of SBR on pancreatic ß-cell morphology, proliferation, and expression of a key regulatory hormone, glucagon-like peptide-1 (GLP-1). C57BL/6 mice underwent 50% SBR or sham operation. At 10 wk, pancreatic insulin content and secretion was measured by ELISA. Immunohistochemistry was performed to determine structural alterations in pancreatic α-and ß-cells. Western blot analysis was used to measure GLP-1R expression, and immunoassay was used to measure plasma insulin and GLP-1. Experiments were repeated by administering a GLP-1 agonist (exendin-4) to a cohort of mice following SBR. After SBR, there was pancreatic islet hypertrophy and impaired glucose tolerance. The proportion of α and ß cells was not grossly altered. Whole pancreas and pancreatic islet insulin content was not significantly different; however, SBR mice demonstrated decreased insulin secretion in both static incubation and islet perfusion experiments. The expression of pancreatic GLP-1R was decreased approximately twofold after SBR, compared with sham and serum GLP-1, was decreased. These metabolic derangements were mitigated after administration of the GLP-1 agonist. Following massive SBR, there is significant hypertrophy of pancreatic islet cells with morphologically intact α- and ß-cells. Significantly reduced pancreatic insulin release in both static and dynamic conditions demonstrate a perturbed second phase of insulin secretion. GLP-1 is a key mediator of this amplification pathway. Decreased expression of serum GLP-1 and pancreatic GLP-1R in face of no change in insulin content presents a novel pathway for enteropancreatic glucose regulation following SBR.NEW & NOTEWORTHY Metabolic changes occur following intestinal resection; however, the effects on pancreatic function are unknown. Prior studies have demonstrated that glucagon-like protein-1 (GLP-1) signaling is a crucial player in the improved insulin sensitivity after bariatric surgery. In this study, we explore the effect of massive small bowel resection on gut hormone physiology and provide novel insights into the enteropancreatic axis.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Intestines/injuries , Islets of Langerhans/metabolism , Pancreas/metabolism , Animals , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin/blood , Insulin-Secreting Cells/metabolism , Mice, Inbred C57BL , Pancreas, Exocrine/metabolism
13.
Nutrients ; 12(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085587

ABSTRACT

This review aims to discuss the role of nutrition and feeding practices in necrotizing enterocolitis (NEC), NEC prevention, and its complications, including surgical treatment. A thorough PubMed search was performed with a focus on meta-analyses and randomized controlled trials when available. There are several variables in nutrition and the feeding of preterm infants with the intention of preventing necrotizing enterocolitis (NEC). Starting feeds later rather than earlier, advancing feeds slowly and continuous feeds have not been shown to prevent NEC and breast milk remains the only effective prevention strategy. The lack of medical treatment options for NEC often leads to disease progression requiring surgical resection. Following resection, intestinal adaptation occurs, during which villi lengthen and crypts deepen to increase the functional capacity of remaining bowel. The effect of macronutrients on intestinal adaptation has been extensively studied in animal models. Clinically, the length and portion of intestine that is resected may lead to patients requiring parenteral nutrition, which is also reviewed here. There remain significant gaps in knowledge surrounding many of the nutritional aspects of NEC and more research is needed to determine optimal feeding approaches to prevent NEC, particularly in infants younger than 28 weeks and <1000 grams. Additional research is also needed to identify biomarkers reflecting intestinal recovery following NEC diagnosis individualize when feedings should be safely resumed for each patient.


Subject(s)
Enterocolitis, Necrotizing/prevention & control , Infant Nutritional Physiological Phenomena , Milk, Human , Animals , Enterocolitis, Necrotizing/diagnosis , Enterocolitis, Necrotizing/surgery , Humans , Infant , Infant Formula , Infant, Newborn , Infant, Premature , Intestines/surgery , Milk , Parenteral Nutrition
14.
J Pediatr Surg ; 54(4): 663-669, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30686518

ABSTRACT

PURPOSE: Management of postoperative pain is a significant challenge following the Nuss procedure. Epidurals, PCAs, and newer analgesia modalities have been used elsewhere without demonstrating consistent improvement in the reported length of hospital stays (LOS). We reviewed a large single surgeon experience identifying three different methods of analgesia used over time to highlight marked improvement in patient LOS. METHODS: IRB approval was obtained and patient clinical information was retrospectively reviewed from 2001 to 2017. The primary outcome variable was length of hospital stay. An expanded preoperative consultation reviews the issue of pain, the negative impact of anxiety on recovery, and our current success of shortened hospital stays with our patients. RESULTS: One hundred and seventy-three patients representing three different analgesia approaches had a LOS of 4.4 days (epidural); 2.2 days (PCA/intercostal nerve block); and 1.6 days (scheduled oral pain meds/intercostal nerve blocks). The current LOS for patients is 1.0 day. Patients successfully stop using narcotics by the end of the first week postoperatively. CONCLUSIONS: Intraoperative intercostal nerve blocks, scheduled postoperative pain medications, and enhanced preoperative consultation aimed to educate patients about anxiety and reframe patient pain expectations have collectively decreased LOS, and reduced postoperative narcotic usage. TYPE OF STUDY: Clinical research LEVEL OF EVIDENCE: Level III.


Subject(s)
Analgesia/methods , Anxiety/drug therapy , Funnel Chest/surgery , Length of Stay/statistics & numerical data , Pain, Postoperative/therapy , Thoracoscopy/adverse effects , Adolescent , Adult , Child , Female , Humans , Male , Narcotics/therapeutic use , Pain Management/methods , Pain Measurement , Retrospective Studies , Thoracoscopy/psychology , Young Adult
15.
J Fam Pract ; 67(5): 302-304, 2018 May.
Article in English | MEDLINE | ID: mdl-29726854

ABSTRACT

40-year-old man was referred to the emergency department (ED) with critical anemia after routine blood work at an outside clinic showed a hemoglobin level of 3.5 g/dL. On presentation, he reported symptoms of fatigue, shortness of breath, bilateral leg swelling, dizziness (characterized as light-headedness), and frequent heartburn. He said that the symptoms began 5 weeks earlier, after he was exposed to a relative with hand, foot, and mouth disease.


Subject(s)
Anemia/etiology , Barrett Esophagus/diagnosis , Dizziness/etiology , Edema/etiology , Peptic Ulcer/diagnosis , Adult , Barrett Esophagus/complications , Extremities , Humans , Male , Peptic Ulcer/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...