Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 88(6): 3232-42, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12466443

ABSTRACT

Axons from receptors in the cat vaginal wall run in the sensory pudendal nerve (SPN), and brief (<10 s) vaginal probing (VP) in the decerebrate cat produces a long-lasting (>1 min) contraction of the triceps surae (TS) muscles. The aim of the present project was to find out whether brief SPN stimulation also produces sustained TS response and, eventually, to study the mechanisms involved in it. Decerebrate female cats were used. In some cats, TS electromyography (EMG) and tension response were recorded; stimulation of left SPN with single or repetitive trains of shocks produced a bilateral TS response that outlasted the stimulus >1 min as VP did. In paralyzed cats (pancuronium; Panc), intracellular recordings were made from hind limb motoneurons (MNs). SPN stimulation produced a depolarization 1 min) electroneurographic (ENG) postdischarge in a small filament of the medial gastrocnemius (MG) nerve; the MG EMG postdischarge was also recorded. Large spikes (LS) and small spikes (SS) were distinguished in the ENG. During the postdischarge, LS frequency and the integrated EMG activity correlated well (r > 0.9); no correlation was found between SS and EMG. After Panc injection, LS postdischarge was absent but the SS postdischarge remained. LS followed by EMG potential were also evoked by brief TS stretch (reflex LS); single shocks to SPN only elicited SS that were not followed by EMG potential. It is concluded that alpha axons and gamma axons produced LS and SS, respectively, and that SPN activates gamma axons. It is proposed that, in the nonparalyzed cats, the stimulation of SPN with trains of shocks might cause an increase in the afferent inflow from muscle spindles to alpha MNs through the sustained firing of gamma MNs. The increased excitatory inflow would depolarize alpha MNs and allow bistable MN firing; Panc would decrease this inflow by blocking transmission to the spindle fibers.


Subject(s)
Hindlimb/innervation , Motor Neurons/physiology , Pelvis/innervation , Action Potentials/drug effects , Animals , Cats , Decerebrate State , Electric Stimulation , Electromyography , Electrophysiology , Female , Motor Neurons, Gamma/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Nervous System Physiological Phenomena , Neuromuscular Nondepolarizing Agents/pharmacology , Pancuronium/pharmacology , Paralysis/chemically induced , Paralysis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...