Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22275981

ABSTRACT

Better understanding of the mechanisms of COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein is unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find 2,6-sialylation is upregulated in plasma of patients with severe COVID-19 and in the lung. This glycan motif is enriched on members of the complement cascade, which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated 2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the 2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-484099

ABSTRACT

As of March 2022, there have been over 450 million reported SARS-CoV-2 cases worldwide, and more than 4 billion people have received their primary series of a COVID-19 vaccine. In order to longitudinally track SARS-CoV-2 antibody levels in people after vaccination or infection, a large-scale COVID-19 sero-surveillance progam entitled SPARTA (SeroPrevalence and Respiratory Tract Assessment) was established early in the pandemic. Anti-RBD antibody levels were tracked in more than 1,000 people. There was no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, significant waning of antibody levels was observed following vaccination, regardless of previous infection status. Moreover, participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to significantly higher antibody levels, and antibodies were maintained at significantly higher levels than in previously infected, unvaccinated participants. This pattern was entirely due to differences in the magnitude of the initial seroconversion event, and the rate of antibody waning was not significantly different based on the pre-immune status. Participants who received a third (booster) dose of an mRNA vaccine not only increased their anti-RBD antibody levels [~]14-fold, but they also had [~]3 times more anti-RBD antibodies compared to the peak of their antibody levels after receiving their primary vaccine series. In order to ascertain whether the presence of serum antibodies is important for long-term seroprotection, PBMCs from 13 participants who lost all detectable circulating antibodies after vaccination or infection were differentiated into memory cells in vitro. There was a significant recall of memory B cells in the absence of serum antibodies in 70% of the vaccinated participants, but not in any of the infected participants. Therefore, there is a strong connection between anti-RBD antibody levels and the effectiveness of memory B cell recall.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21261046

ABSTRACT

BackgroundIn the current phase of COVID-19 pandemic, we are facing two serious public health challenges that include deficits in SARS-CoV-2 variant monitoring, and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent and dynamics of the outbreak are required to understand the transmission of the virus amongst seemingly unrelated cases and provide critical epidemiological information. To address these challenges, we evaluated a new high-throughput next-generation sequencing (NGS), respiratory viral panel (RVP) that includes 40 viral pathogens with the aim of analyzing viral subtypes, mutational variants of SARS-CoV-2, model to understand the spread of the virus in the state of Georgia, USA, and to assess other circulating viruses in the same population. MethodsThis study evaluated a total of 522 samples that included 483 patient samples and 42 synthetic positive control material. The performance metrics were calculated for both clinical and reference control samples by comparing detection results with the RT-PCR assay. The limit of detection (LoD) studies were conducted as per the FDA guidelines. Inference and visualization of the phylogeny of the SARS-CoV-2 sequences were performed through the Nextstrain Command-Line Interface (CLI) tool, utilizing the associated augur and auspice toolkits. ResultsThe performance metrics calculated using both the clinical samples and the reference controls revealed a PPA, NPA and accuracy of 95.98%, 85.96% and 94.4%, respectively. The LoD was determined to be 10 copies/ml with all 25 replicates detected across two different runs. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF 3a and, S84L in ORF8 covarying with the D614G spike protein mutation were the most prevalent, early in the pandemic, in Georgia, USA. In our analysis, isolates from the same county formed paraphyletic groups, which indicated virus transmission between counties. ConclusionThe study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats, models that provide insights into viral transmission patterns and predict transmission/ resurgence of regional outbreaks and provide critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21258073

ABSTRACT

Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibody in the serum. Rarely does immune monitoring entail assessment of the memory B cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their precursory frequency, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally-suited for antigen-specific B cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen coating approach streamlines characterization of the memory B cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune monitoring efforts of large donor cohorts in general.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-445137

ABSTRACT

As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naive participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naive participants (p<0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, ~46% of the immunologically naive participants required both vaccinations to seroconvert.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21249279

ABSTRACT

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic. Brief SummaryA multi-antigen assay for monitoring SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type was developed.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-424554

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes for therapeutic efficacy. Thus, potently neutralizing mAbs require Fc effector functions for maximal therapeutic benefit during therapy to modulate protective immune responses and mitigate lung disease.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20236901

ABSTRACT

BackgroundThe limitations of widespread current COVID-19 diagnostic testing lie at both pre-analytical and analytical stages. Collection of nasopharyngeal swabs is invasive and is associated with exposure risk, high cost, and supply-chain constraints. Additionally, the RNA extraction in the analytical stage is the most significant rate-limiting step in the entire testing process. To alleviate these limitations, we developed a universal saliva processing protocol (SalivaSTAT) that would enable an extraction free RT-PCR test using any of the commercially available RT-PCR kits. MethodsWe optimized saliva collection devices, heat-shock treatment and homogenization. The effect of homogenization on saliva samples for extraction-free RT-PCR assay was determined by evaluating samples with and without homogenization and preforming viscosity measurements. Saliva samples (872) previously tested using the FDA-EUA method were reevaluated with the optimized SalivaSTAT protocol using two widely available commercial RT-PCR kits. Further, a five-sample pooling strategy was evaluated as per FDA guidelines using the SalivaSTAT protocol. ResultsThe saliva collection (done without any media) performed comparable to the FDA-EUA method. The SalivaSTAT protocol was optimized by incubating saliva samples at 95{degrees}C for 30-minutes and homogenization, followed by RT-PCR assay. The clinical sample evaluation of 630 saliva samples using the SalivaSTAT protocol with PerkinElmer (600-samples) and CDC (30-samples) RT-PCR assay achieved positive (PPA) and negative percent agreement (NPA) of 95.8% and 100%, respectively. The LoD was established as [~]20-60 copies/ml by absolute quantification. Further, a five-sample pooling evaluation using 250 saliva samples achieved a PPA and NPA of 92% and 100%, respectively. ConclusionWe have optimized an extraction-free direct RT-PCR assay for saliva samples that demonstrated comparable performance to FDA-EUA assay (Extraction and RT-PCR). The SalivaSTAT protocol is a rapid, sensitive, and cost-effective method that can be adopted globally, and has the potential to meet testing needs and may play a significant role in management of the current pandemic.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-20182816

ABSTRACT

BackgroundThe adoption of saliva as a specimen type for SARS-CoV-2 mass surveillance can significantly increase population compliance with decreased exposure risk for healthcare workers. However, studies evaluating the clinical performance of saliva compared to nasopharyngeal swab (NPS) samples have demonstrated conflicting results regardless of the collection being in healthcare or community settings. Further, pooled testing with saliva remains a challenge owing to the ambiguous sensitivity, limit of detection (LoD), and processing challenges. To overcome these limitations, SalivaAll protocol was developed and validated as a cost-effective measure that must be used on saliva collected in health care or community settings with pooling utility for SARS-CoV-2 mass surveillance. MethodsThe study evaluated 429 matched NPS and saliva samples collected from 344 individuals in either healthcare or community setting. In phase I (protocol U), 240 matched NPS, and saliva samples were tested for SARS-CoV-2 detection by RT-PCR. In phase II (SalivaAll protocol), 189 matched NPS and saliva samples were tested, with an additional sample homogenization step for saliva before RNA extraction, followed by RT-PCR. Eighty-five saliva samples were evaluated with both protocols (U and SalivaAll). Subsequently, adopting SalivaAll protocol, a five-sample pooling strategy was evaluated for saliva samples based on FDA recommendations. ResultsIn phase I, 28.3% (68/240) samples tested positive for SARS-CoV-2 from either saliva, NPS, or both. The detection rate was lower in saliva compared to NPS samples (50.0% vs. 89.7%). In phase II, 50.2% (95/189) samples tested positive for SARS-CoV-2 from either saliva, NPS, or both. The detection rate for SARS-CoV-2 was higher in saliva compared to NPS testing (97.8% vs. 78.9%). Of the 85 saliva samples evaluated by both protocols, 57.6% (49) tested positive for SARS-CoV-2 with either protocol U, SalivaAll, or both. The detection rate was 100% for samples tested with SalivaAll, whereas it was 36.7% with protocol U. Also, the LoD with SalivaAll protocol was 20 copies/ml. The pooled testing approach demonstrated a 95% positive and 100% negative percent agreement. ConclusionThis single-site study demonstrated the variability of results reported in the literature for saliva samples, and found that the discrepancies are explained by processing challenges associated with saliva samples. We have optimized a protocol for saliva samples that results in higher sensitivity compared to NPS samples and also breaks the barrier to using pooled saliva testing for SARS-CoV-2. SummarySalivaAll is a very sensitive (LoD 20 copies/ml) cost-effective test validated on saliva collected in health care and community settings with pooling utility and submitted for FDA Emergency Use Authorization.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20163626

ABSTRACT

The current gold-standard molecular diagnosis for COVID-19 is based on a multi-step assay involving RNA-extraction and RT-PCR analysis for the detection of SARS-CoV-2. RNA-extraction step has been a major rate-limiting step in implementing high-throughput screening for COVID-19 during this pandemic. Moreover, clinical laboratories are facing several challenges that include cost, reagents, instrumentation, turn-around time, trained personnel, and supply-chain constraints to efficiently implement and sustain testing. Cognizant of these limitations, we evaluated the extraction-free methods described in the literature and have developed an innovative, simplified and easy protocol employing limited reagents to extract RNA for subsequent RT-PCR analysis. Nasopharyngeal-swab samples were subjected to the following individual conditions: 65{degrees}C for 15 minutes; 80{degrees}C for 5 minutes; 90{degrees}C for 5 minutes or 80{degrees}C for 1 minute, and processed for direct RT-PCR. These groups were also compared with a supplemental protocol adding isopropanol-ethanol-water elution steps followed by RT-PCR assay. The direct RT-PCR assay did not detect SARS-CoV-2 within the various temperature incubation only groups, whereas, the 90{degrees}C for 5 minutes-isopropanol-ethanol-water method was found to be comparable to the FDA-EUA method. Evaluation of the performance metrics for 100 clinical samples demonstrated a sensitivity of 94.2% and a specificity of 100%. The limit of detection was ascertained to be [~]40 copies/ml by absolute-quantification. The protocol presented for this assay employs limited reagents and yields results with high sensitivity. Additionally, it presents a simplified methodology that would be easier to implement in laboratories in limited resource countries in order to meet the high current COVID-19 testing needs.

SELECTION OF CITATIONS
SEARCH DETAIL
...