Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Rep ; 14(1): 8830, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632265

ABSTRACT

Face masks are essential in reducing the transmission of respiratory infections and bacterial filtration efficiency, a key parameter of mask performances, requires the use of Staphylococcus aureus and specialised staff. This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule. The proposed setup is composed of a commercial aerosol generator commonly used for aerosol therapy, custom 3D printed aerosol chamber and sample holder, a filter for downstream riboflavin detection and a vacuum pump. The filtration efficiency of four different masks was assessed using the riboflavin-based setup and the bacterial filtration efficiency (BFE). The averaged filtration efficiency values, measured with both methods, were similar but were higher for the riboflavin-based setup (about 2% for all tested samples) than bacterial filtration efficiency. Considering the good correlation, the riboflavin-based setup can be considered validated as an alternative method to bacterial filtration efficiency for masks and related materials fabrics filtration efficiency screening but This study aims to develop a novel method for a preliminary screening of masks or materials filtration efficiency by a green, easy and rapid setup based on the use of a riboflavin solution, a safe autofluorescent biomolecule, but not to replace regulation approaches. The proposed setup can be easily implemented at low price, is more rapid and eco-friendly and can be performed in chemical-physical laboratories without the needing of biosafety laboratory and specialised operators.


Subject(s)
Masks , Respiratory Protective Devices , Humans , Respiratory Aerosols and Droplets , Filtration , Aerosols
2.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445659

ABSTRACT

Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-ß (TGF-ß)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-ß. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-ß-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.


Subject(s)
Curcumin , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Curcumin/pharmacology , Proteomics , Liver/metabolism , Fibrosis , Anti-Inflammatory Agents
3.
Eur J Med Chem ; 256: 115446, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37182332

ABSTRACT

BRAF represents one of the most frequently mutated protein kinase genes and BRAFV600E mutation may be found in many types of cancer, including hairy cell leukemia (HCL), anaplastic thyroid cancer (ATC), colorectal cancer and melanoma. Herein, a fluorescent probe, based on the structure of the highly specific BRAFV600E inhibitor Vemurafenib (Vem, 1) and featuring the NIR fluorophore cyanine-5 (Cy5), was straightforwardly synthesized and characterized (Vem-L-Cy5, 3), showing promising spectroscopic properties. Biological validation in BRAFV600E-mutated cancer cells evidenced the ability of 3 to penetrate inside the cells, specifically binding to its elective target BRAFV600E with high affinity, and inhibiting MEK phosphorylation and cell growth with a potency comparable to that of native Vem 1. Taken together, these data highlight Vem-L-Cy5 3 as a useful tool to probe BRAFV600E mutation in cancer cells, and suitable to acquire precious insights for future developments of more informed BRAF inhibitors-centered therapeutic strategies.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Cell Line, Tumor
4.
Biology (Basel) ; 11(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35453765

ABSTRACT

TGF-ß is a cytokine implicated in multiple cellular responses, including cell cycle regulation, fibrogenesis, angiogenesis and immune modulation. In response to pro-inflammatory and chemotactic cytokines and growth factors, cholangiocytes prime biliary damage, characteristic of cholangiopathies and pathologies that affect biliary tree. The effects and signaling related to TGF-ß in cholangiocyte remains poorly investigated. In this study, the cellular response of human cholangiocytes to TGF-ß was examined. Wound-healing assay, proliferation assay and cell cycle analyses were used to monitor the changes in cholangiocyte behavior following 24 and 48 h of TGF-ß stimulation. Moreover, proteomic approach was used to identify proteins modulated by TGF-ß treatment. Our study highlighted a reduction in cholangiocyte proliferation and a cell cycle arrest in G0/G1 phase following TGF-ß treatment. Moreover, proteomic analysis allowed the identification of four downregulated proteins (CaM kinase II subunit delta, caveolin-1, NipSnap1 and calumin) involved in Ca2+ homeostasis. Accordingly, Gene Ontology analysis highlighted that the plasma membrane and endoplasmic reticulum are the cellular compartments most affected by TGF-ß. These results suggested that the effects of TGF-ß in human cholangiocytes could be related to an imbalance of intracellular calcium homeostasis. In addition, for the first time, we correlated calumin and NipSnap1 to TGF-ß signaling.

5.
J Cardiovasc Transl Res ; 15(2): 391-407, 2022 04.
Article in English | MEDLINE | ID: mdl-34409583

ABSTRACT

Cardiac hypertrophy, in its aspects of localized thickening of the interventricular septum and concentric increase of the left ventricle, constitutes a risk factor of heart failure. Myocardial hypertrophy, in the presence of different degree of myocardial fibrosis, is paralleled by significant molecular, cellular, and histological changes inducing alteration of cardiac extracellular matrix composition as well as sarcomeres and cytoskeleton remodeling. Previous studies indicate osteopontin (OPN) and more recently survivin (SURV) overexpression as the hallmarks of heart failure although SURV function in the heart is not completely clarified. In this study, we investigated the involvement of SURV in intracellular signaling of hypertrophic cardiomyocytes and the impact of its transcriptional silencing, laying the foundation for novel target gene therapy in cardiac hypertrophy. Oligonucleotide-based molecules, like theranostic optical nanosensors (molecular beacons) and siRNAs, targeting SURV and OPN mRNAs, were developed. Their diagnostic and therapeutic potential was evaluated in vitro in hypertrophic FGF23-induced human cardiomyocytes and in vivo in transverse aortic constriction hypertrophic mouse model. Engineered erythrocyte was used as shuttle to selectively target and transfer siRNA molecules into unhealthy cardiac cells in vivo. The results highlight how the SURV knockdown could negatively influence the expression of genes involved in myocardial fibrosis in vitro and restores structural, functional, and morphometric features in vivo. Together, these data suggested that SURV is a key factor in inducing cardiomyocytes hypertrophy, and its shutdown is crucial in slowing disease progression as well as reversing cardiac hypertrophy. In the perspective, targeted delivery of siRNAs through engineered erythrocytes can represent a promising therapeutic strategy to treat cardiac hypertrophy. Theranostic SURV molecular beacon (MB-SURV), transfected into FGF23-induced hypertrophic human cardiomyocytes, significantly dampened SURV overexpression. SURV down-regulation determines the tuning down of MMP9, TIMP1 and TIMP4 extracellular matrix remodeling factors while induces the overexpression of the cardioprotective MCAD factor, which counterbalance the absence of pro-survival and anti-apoptotic SURV activity to protect cardiomyocytes from death. In transverse aortic constriction (TAC) mouse model, the SURV silencing restores the LV mass levels to values not different from the sham group and counteracts the progressive decline of EF, maintaining its values always higher with respect to TAC group. These data demonstrate the central role of SURV in the cardiac reverse remodeling and its therapeutic potential to reverse cardiac hypertrophy.


Subject(s)
Cardiomegaly , Heart Failure , Animals , Cardiomegaly/genetics , Cardiomegaly/therapy , Disease Models, Animal , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Survivin/genetics , Survivin/metabolism , Survivin/therapeutic use , Ventricular Remodeling
6.
Molecules ; 26(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885918

ABSTRACT

The thyroid hormone receptors are the mediators of a multitude of actions by the thyroid hormones in cells. Most thyroid hormone activities require interaction with nuclear receptors to bind DNA and regulate the expression of target genes. In addition to genomic regulation, thyroid hormones function via activation of specific cytosolic pathways, bypassing interaction with nuclear DNA. In the present work, we reviewed the most recent literature on the characteristics and roles of different factors involved in thyroid hormone function in particular, we discuss the genomic activity of thyroid hormone receptors in the nucleus and the functions of different thyroid hormone receptor isoforms in the cytosol. Furthermore, we describe the integrin αvß3-mediated thyroid hormone signaling pathway and its rapid nongenomic action in the cell. We furthermore reviewed the thyroid hormone transporters enabling the uptake of thyroid hormones in the cell, and we also include a paragraph on the proteins that mediate thyroid receptors' shuttling from the nucleus to the cytosol.


Subject(s)
Receptors, Thyroid Hormone/metabolism , Thyroid Hormones/metabolism , Animals , Biological Transport , Cell Nucleus/metabolism , Cytosol/metabolism , Humans , Integrin alphaVbeta3/metabolism , Protein Domains , Receptors, Thyroid Hormone/analysis , Signal Transduction , Thyroid Hormones/analysis
7.
Sci Rep ; 10(1): 21142, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273530

ABSTRACT

Ubiquitous in nature, polyamines (PAs) are a class of low-molecular aliphatic amines critically involved in cell growth, survival and differentiation. The polycation behavior is validated as a successful strategy in delivery systems to enhance oligonucleotide loading and cellular uptake. In this study, the chemical features and the functional roles of the PA spermidine are synergistically exploited in the synthesis and bioactive functionalization of SiO2-based structures. Inspired by biosilicification, the role of spermidine is assessed both as catalyst and template in a biomimetic one-pot synthesis of dense silica-based particles (SPs) and as a competitive agent in an interfacial reassembly strategy, to empty out SPs and generate spermidine-decorated hollow silica nanoporous pods (spd-SNPs). Spermidine bioactivity is then employed for targeting tumor cell over-expressed polyamine transport system (PTS) and for effective delivery of functional miRNA into melanoma cells. Spermidine decoration promotes spd-SNP cell internalization mediated by PTS and along with hollow structure enhances oligonucleotide loading. Accordingly, the functional delivery of the tumor suppressor miR-34a 3p resulted in intracellular accumulation of histone-complexed DNA fragments associated with apoptosis. Overall, the results highlight the potential of spd-SNP as a multi-agent anticancer therapy.

8.
Pharmacogenomics J ; 19(5): 455-464, 2019 10.
Article in English | MEDLINE | ID: mdl-30686821

ABSTRACT

Biomarkers able to improve the cost/benefit ratio are urgently needed for metastatic colorectal cancer patients that are eligible to receive regorafenib. Here, we measured plasma levels of ten circulating microRNAs (c-miRNAs) and we investigated their early changes during treatment, as well as possible correlation with clinical outcome. Ten literature-selected c-miRNAs were quantified by qRT-PCR on plasma samples collected at baseline (d1) and after 15 days of treatment (d15). C-miRNAs showing significant changes were further analyzed to establish correlations with outcome. A decision tree-based approach was employed to define a c-miRNA signature able to predict the outcome. Results achieved in an exploratory cohort were tested in a validation group. In the exploratory cohort (n = 34), the levels of c-miR-21 (p = 0.06), c-miR-141 (p = 0.04), and c-miR-601 (p = 0.01) increased at d15 compared with d1. A c-miRNA signature involving c-miR-21, c-miR-221, and c-miR-760 predicted response to treatment (p < 0.0001) and was significantly associated to PFS (HR = 10.68; 95% CI 3.2-35.65; p < 0.0001). In the validation cohort (n = 36), the increase in c-miR-21 (p = 0.02) and c-miR-601 (p = 0.02) levels at d15 was confirmed, but the associations with outcome were not. Our data indicate that early changes of c-miRNA levels might be influenced by regorafenib treatment. However, further studies are needed to establish the predictive power of such modifications.


Subject(s)
Circulating MicroRNA/blood , Colorectal Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Pyridines/therapeutic use , Adult , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Humans , Male , MicroRNAs/blood , Middle Aged , Neoplasm Metastasis
9.
Mol Ther Nucleic Acids ; 4: e235, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25919089

ABSTRACT

Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i) target tumor cells via an antitransferrin receptor RNA aptamer and (ii) perform selective codelivery of a chemotherapeutic drug (Doxorubicin) and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment). Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells.

10.
J Biomed Mater Res A ; 103(10): 3284-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25809157

ABSTRACT

As the endothelium still represents the ideal surface for cardiovascular devices, different endothelialization strategies have been attempted for biocompatibility and nonthrombogenicity enhancement. Since endothelial progenitor cells (EPCs) could accelerate endothelialization, preventing thrombosis and restenosis, the aim of this study was to use oligonucleotides (ONs) to biofunctionalize stents for EPC binding. In order to optimize the functionalization procedure before its application to cobalt-chromium (Co/Cr) stents, discs of the same material were preliminarily used. Surface aminosilanization was assessed by infrared spectroscopy and scanning electron microscopy. A fluorescent endothelial-specific ON was immobilized on aminosilanized surfaces and its presence was visualized by confocal microscopy. Fluorescent ON binding to porcine blood EPCs was assessed by flow cytometry. Viability assay was performed on EPCs cultured on unmodified, nontargeting ON or specific ON-coated discs; fluorescent staining of nuclei and F-actin was then performed on EPCs cultured on unmodified or specific ON-coated discs and stents. Disc biofunctionalization significantly increased EPC viability as compared to both unmodified and nontargeting ON-coated surfaces; cell adhesion was also significantly increased. Stents were successfully functionalized with the specific ON, and EPC binding was confirmed by confocal microscopy. In conclusion, stent biofunctionalization for EPC binding was successfully achieved in vitro, suggesting its use to obtain in vivo endothelialization, exploiting the natural regenerative potential of the human body.


Subject(s)
Chromium Alloys/chemistry , Endothelial Cells/metabolism , Materials Testing , Oligonucleotides/chemistry , Stem Cells/metabolism , Stents , Animals , Cell Adhesion , Humans , Swine
11.
Recenti Prog Med ; 104(5): 189-99, 2013 May.
Article in Italian | MEDLINE | ID: mdl-23748691

ABSTRACT

With the disclosure of the human genome a new era for bio-medicine has arisen, characterized by the challenge to investigate pathogenic mechanisms, studying simultaneously metabolites, DNA, RNA, and proteins. As a result, the "omics" revolution boomed, giving birth to a new medicine named "omics-based medicine". Among the other "omics", proteomics has been widely used in medicine, since it can produce a more "holistic" overview of a disease and provide a "constellation" of possible specific markers, a molecular fingerprinting that defines the clinical condition of an individual. Endpoint of this comprehensive and detailed analysis is the "diagnostic-omics", i.e. the achievement of personalized diagnoses with obvious benefits for prevention and therapy and this goal can be reached only with a perfect integration between clinicians and proteomists. To impact on the possible key factors involved in the pathological processes, oligonucleotide-based knock-down strategies can be helpful. They exploit omics-derived molecular tools (antisense, siRNA, ribozymes, decoys, and aptamers) that can be used to inhibit, at transcriptional or post-transcriptional levels, the events leading to protein synthesis, thus decreasing its expression. The identification of the pivotal mechanisms involved in diseases using global, "scenic" approaches such as the "omics" ones, and the subsequent validation and detailed description of the processes by specific molecular tools, can result in a more preventive, predictive and personalized medicine.


Subject(s)
Precision Medicine , Proteomics , Biomarkers , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Electrophoresis, Polyacrylamide Gel/methods , Forecasting , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Therapy , Genome, Human , Humans , Mass Spectrometry , Metabolic Networks and Pathways , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Oligonucleotides/therapeutic use , Precision Medicine/methods , Precision Medicine/trends , Proteome , Signal Transduction , Subtraction Technique
12.
Article in English | MEDLINE | ID: mdl-22746344

ABSTRACT

Vascular restenosis is affecting 30-40% of patients treated by percutaneous coronary angioplasty (PTCA). The advent of stenting reduced but not abolished restenosis. The introduction of drug eluting stent (DES) further reduced restenosis, but impaired endothelization exposed to intracoronary thrombosis as late adverse event. It is widely accepted that the endothelial denudation and coronary wall damages expose Vascular Smooth Muscle Cells (VSMC) to multiple growth factors and plasma circulating agents thus activating migration and proliferative pathways leading to restenosis. Among the major players of this processes, phosphorylated Elk-1, forming the Elk-1/SRF transcription complex, controls the expression of a different set of genes responsible for cell proliferation. Therefore, it is feasible that gene-specific oligonucleotide therapy targeting VSMC migration and proliferation genes can be a promising therapeutic approach. While a plethora of vehicles is suitably working in static in vitro cultures, methods for in vivo delivery of oligonucleotides are still under investigation. Recently, we have patented a novel erythrocyte-based drug delivery system with high capability to fuse with targeted cells thus improving drug bioavailability at the site of action. Here, the potential of these engineered porcine erythrocytes to deliver a synthetic DNA Elk-1 decoy inside syngenic porcine VSMC was tested. The results of this study indicate that Elk-1 decoy is actually able to inhibit cell proliferation and migration of VSMC. Our data also suggest that erythrocyte-based carriers are more efficient in delivering these oligonucleotides in comparison to conventional vehicles. As a consequence, a lower dose of Elk-1 decoy, delivered by engineered erythrocytes, was sufficient to inhibit cell growth and migration. This approach represents the translational step to reach in vivo experiments in pigs after PTCA and/or stent implantation where oligonucleotide drugs will be site-specific administered by using erythrocyte-based carriers to prevent restenosis.


Subject(s)
Coronary Restenosis/therapy , DNA/administration & dosage , Erythrocytes/physiology , Gene Transfer Techniques , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Animals , Cell Growth Processes/physiology , Coronary Restenosis/etiology , Coronary Restenosis/genetics , Coronary Restenosis/prevention & control , DNA/blood , Genetic Therapy/methods , Microscopy, Confocal , Muscle, Smooth, Vascular/cytology , Stents , Swine , ets-Domain Protein Elk-1/genetics
13.
BMC Res Notes ; 5: 268, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22676333

ABSTRACT

BACKGROUND: Vascular Smooth Muscle Cells (VSMCs), due to their plasticity and ability to shift from a physiological contractile-quiescent phenotype to a pathological proliferating-activated status, play a central role in the onset and progression of atherosclerosis and cardiovascular diseases. PDGF-BB, among a series of cytokines and growth factors, has been identified as the critical factor in this phenotypic switch. In order to obtain new insights on the molecular effects triggered by PDGF-BB, a hammerhead ribozyme targeting the membrane receptor PDGFR-ß was applied to inhibit PDGF pathway in porcine VSMCs. FINDINGS: Ribozymes, loaded on a cationic polymer-based vehicle, were delivered into cultured VSMCs. A significant impairment of the activation mechanisms triggered by PDGF-BB was demonstrated since cell migration decreased after treatments. In order to functionally validate the effects of PDGFR-ß partial knock down we focused on the phosphorylation status of two proteins, protein disulfide isomerase-A3 (PDI-A3) and heat shock protein-60 (HSP-60), previously identified as indicative of VSMC phenotypic switch after PDGF-BB stimulation. Interestingly, while PDI-A3 phosphorylation was counteracted by the ribozyme administration indicating that PDI-A3 is a factor downstream the receptor signalling cascade, the HSP-60 phosphorylation status was greatly increased by the ribozyme administration. CONCLUSION: These contradictory observations suggested that PDGF-BB might trigger different parallel pathways that could be modulated by alternative isoforms of the receptors for the growth factor. In conclusion the knock down strategy here described enables to discriminate between two tightly intermingled pathways. Moreover it opens new attractive perspectives in functional investigations where combined gene knock down and proteomic technologies would allow the identification of key factors and pathways involved in VSMC-linked pathological disorders.


Subject(s)
Gene Knockdown Techniques/methods , Myocytes, Smooth Muscle/metabolism , Proto-Oncogene Proteins c-sis/physiology , RNA, Catalytic/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , Becaplermin , Blotting, Western , Cell Movement/genetics , Cell Movement/physiology , Cells, Cultured , Chaperonin 60/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression , Muscle, Smooth, Vascular/cytology , Phosphorylation , Protein Disulfide-Isomerases/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-sis/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Sus scrofa , Transfection
14.
Proteome Sci ; 8: 15, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20334645

ABSTRACT

BACKGROUND: The use of chromatography coupled with mass spectrometry (MS) analysis is a powerful approach to identify proteins, owing to its capacity to fractionate molecules according to different chemical features. The first protein expression map of vascular smooth muscle cells (VSMC) was published in 2001 and since then other papers have been produced. The most detailed two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) map was presented by Mayr et al who identified 235 proteins, corresponding to the 154 most abundant unique proteins in mouse aortic VSMC. A chromatographic approach aimed at fractionating the VSMC proteome has never been used before. RESULTS: This paper describes a strategy for the study of the VSMC proteome. Our approach was based on pre-fractionation with ion exchange chromatography coupled with matrix assisted laser desorption-time of flight mass spectrometry analysis assisted by a liquid chromatography (LC-MALDI-TOF/TOF). Ion exchange chromatography resulted in a good strategy designed to simplify the complexity of the cellular extract and to identify a large number of proteins. Selectivity based on the ion-exchange chemical features was adequate if evaluated on the basis of protein pI. The LC-MALDI approach proved to be highly reproducible and sensitive since we were able to identify up to 815 proteins with a concentration dynamic range of 7 orders of magnitude. CONCLUSIONS: In our opinion, the large number of identified proteins and the promising quantitative reproducibility made this approach a powerful method to analyze complex protein mixtures in a high throughput way and to obtain statistical data for the discovery of key factors involved in VSMC activation and to analyze a label-free differential protein expression.

15.
Drug Discov Today ; 14(15-16): 776-83, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19477286

ABSTRACT

Gene function assessment is a main task in biological networking investigations and system biology. High throughput technologies provide an impressive body of data that enables the design of hypotheses linking genes to phenotypes. When a putative scenario is depicted, gene knockdown technologies and RNA-dependent gene silencing are the most frequent approaches to assess the role of key effectors. In this paper, we discuss the relevance of hammerhead ribozymes in target discovery and validation, describing their properties and applications and highlighting their selectivity. In particular, similarities with siRNAs are presented and advantages and drawbacks are discussed. A description of the perspectives of ribozyme application in wide range studies is also provided, strengthening the value of these inhibitors for target validation purposes.


Subject(s)
Gene Knockdown Techniques , Gene Targeting/methods , RNA, Catalytic/metabolism , Animals , Drug Design , Gene Silencing , Humans , RNA, Small Interfering/metabolism , Validation Studies as Topic
16.
Biosens Bioelectron ; 20(11): 2376-85, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15797341

ABSTRACT

The quantitative determination of specific cellular messenger-RNA is extremely important both in basic and applied research, especially in diagnostic and pharmacological fields. In order to perform a direct and easy quantification of transcripts on cell extracts, the feasibility of an analytical device able to selectively detect a defined target RNA in a complex mixture while avoiding labelling, retrotranscription and amplification steps, has been explored. In particular, several aspects necessary to obtain good selectivity in target recognition, stability, reusability and sensitivity of a gene specific biosensor were considered. For the development of suitable probe-receptors, analysis of the nucleotide sequence of the target mRNA was carried out to localise the preferred binding regions. As criteria for optimisation, we selected accessibility and uniqueness. Oligonucleotide probes, designed to specifically bind these sequences, were synthesised by using particular monomers producing nuclease-resistant RNA strands with high affinity towards the target. Quartz crystal microbalance (QCM) technology was selected to realise a microgravimetric sensor able to bind the RNA under investigation through a complementary oligonucleotide probe. Covalent immobilisation of bioreceptor molecules to the transducer sensitive surface ensured a stable integration between the two. The binding ability of immobilised probes was tested evaluating their annealing behaviour with both complementary oligonucleotides and full-length target mRNA. The conditions necessary for the regeneration of biosensor were also assessed. Measurements of shift in QCM resonant frequency, performed by hybridisation experiments in liquido, demonstrate that a label-free RNA-biosensor with high specificity, reusability and the ability to give quantitative information, can be realised.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Probes/chemical synthesis , Oligonucleotide Probes/genetics , RNA/analysis , RNA/genetics , Biosensing Techniques/methods , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Equipment Reuse , Oligonucleotide Array Sequence Analysis/methods , Systems Integration
17.
Biosens Bioelectron ; 19(2): 85-93, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14568707

ABSTRACT

A study of antibody immobilisation techniques on quartz and fibre optic surfaces for immunosensors has been carried out. Methods of covalent antibody immobilisation which have not previously been applied to optical fibres were investigated, and compared with classical methods found in the literature. Preliminary experiments on covalent immobilisation methods on planar quartz surfaces were conducted to enable us to choose the most suitable protein immobilisation technique for sensor applications. The immobilisation studies were directed in particular towards obtaining a high density of binding sites for the analyte of interest. Two of the most promising methods, antibody immobilisation on surfaces coated with dextran based hydrogel and F(ab')-SH fragments bound to silanised glass, which resulted in surface densities of active sites of above 0.45 pmol/cm2, were selected for further experiments on a fibre optic total internal reflection fluorescence immunosensor and gave satisfactory responses to changes in analyte concentrations of the order of 10(-8) M. The efficiency of polar organic solvents, such as dimethylsulfoxide, in dissociating the antigen-antibody complex and hence to regenerate the immunosensor surface was also evaluated.


Subject(s)
Antibodies/chemistry , Biosensing Techniques/instrumentation , Electrodes , Fiber Optic Technology/instrumentation , Immunoassay/methods , Immunoglobulin G/analysis , Serum Albumin/analysis , Spectrometry, Fluorescence/instrumentation , Adsorption , Animals , Antibodies/analysis , Antibodies/immunology , Antigen-Antibody Complex/analysis , Antigen-Antibody Complex/immunology , Biosensing Techniques/methods , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Equipment Design , Equipment Failure Analysis , Humans , Immunoassay/instrumentation , Immunoglobulin G/immunology , Rabbits , Serum Albumin/immunology , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...