Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; (15): 2377-85, 2004 Aug 07.
Article in English | MEDLINE | ID: mdl-15278134

ABSTRACT

A series of protected and terminal dialkynes with extended pi-conjugation through a condensed aromatic linker unit in the backbone, 1,4-bis(trimethylsilylethynyl)naphthalene, 1,4-bis(ethynyl)naphthalene, 9,10-bis(trimethylsilylethynyl)anthracene, 9,10-bis(ethynyl)anthracene, have been synthesized and characterized spectroscopically. The solid-state structures of and have been confirmed by single crystal X-ray diffraction studies. Reaction of two equivalents of the complex trans-[Ph(Et(3)P)(2)PtCl] with an equivalent of the terminal dialkynes 1,4-bis(ethynyl)benzene and, in (i)Pr(2)NH-CH(2)Cl(2), in the presence of CuI, at room temperature, afforded the platinum(II) di-ynes trans-[Ph(Et(3)P)(2)Pt-C[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-Pt(PEt(3))(2)Ph](R = benzene-1,4-diyl; naphthalene-1,4-diyl and anthracene-9,10-diyl ) while reactions between equimolar quantities of trans-[((n)Bu(3)P)(2)PtCl(2)] and under similar conditions readily afforded the platinum(II) poly-ynes trans-[-((n)Bu(3)P)(2)Pt-C[triple bond]C-R-C[triple bond]C-](n)(R = naphthalene-1,4-diyl and anthracene-9,10-diyl ). The Pt(II) diynes and poly-ynes have been characterized by analytical and spectroscopic methods, and the single crystal X-ray structures of and have been determined. These structures confirm the trans-square planar geometry at the platinum centres and the linear nature of the molecules. The di-ynes and poly-ynes are soluble in organic solvents and readily cast into thin films. Optical spectroscopic measurements reveal that the electron-rich naphthalene and anthracene spacers create strong donor-acceptor interactions between the Pt(II) centres and conjugated ligands along the rigid backbone of the organometallic polymers. Thermogravimetry shows that the di-ynes possess a somewhat higher thermal stability than the corresponding poly-ynes. Both the Pt(II) di-ynes and the poly-ynes exhibit increasing thermal stability along the series of spacers from phenylene through naphthalene to anthracene.

2.
J Am Chem Soc ; 125(40): 12277-83, 2003 Oct 08.
Article in English | MEDLINE | ID: mdl-14519013

ABSTRACT

The "rigid-core" material 3,5-dimethyl-2,3'-bis(3-methylthiophene)-dithieno[3,2-b:',3'-d]thiophene-4,4-dioxide (DTTOMe4) has the highest photoluminescence ever reported for thiophene-based molecules in the solid state. We report the structure of this material, determined directly from powder X-ray diffraction data using the Genetic Algorithm method for structure solution, followed by Rietveld refinement, and the structural properties are discussed in relation to the structures of the corresponding subsystems DTTO and DTTOMe. While the crystal structures of the latter compounds contain cofacial dimers, the crystal structure of DTTOMe4 comprises layers of molecules aligned in an antiparallel fashion. Intermediate neglect of differential overlap with single configuration interaction (INDO/SCI) calculations on the intermolecular interactions in the three crystal structures show that the different solid-state photoluminescence efficiencies of DTTOMe4, DTTOMe, and DTTO cannot be correlated with the different types of dipole-dipole alignment in the solid state. Instead, photoluminescence efficiencies correlate well with the rate of formation of nonradiatively decaying charge-transfer pairs upon photoexcitation. Because of larger intermolecular distances in DTTOMe4, the photoluminescence is less effectively quenched by charge-transfer processes than in DTTOMe and DTTO.

SELECTION OF CITATIONS
SEARCH DETAIL
...