Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 68(8): 1430-1438, 2019 08.
Article in English | MEDLINE | ID: mdl-30971437

ABSTRACT

OBJECTIVE: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. DESIGN: Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. RESULTS: Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. CONCLUSION: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.


Subject(s)
Gastrointestinal Microbiome/physiology , Insulin/metabolism , Inulin , Metabolome/physiology , Obesity , Overweight , Adult , Body Mass Index , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Feces/microbiology , Female , Humans , Inflammation/metabolism , Insulin Resistance/physiology , Inulin/administration & dosage , Inulin/metabolism , Male , Middle Aged , Obesity/diagnosis , Obesity/diet therapy , Obesity/metabolism , Overweight/diagnosis , Overweight/diet therapy , Overweight/metabolism , Propionates/administration & dosage , Propionates/metabolism , Treatment Outcome
2.
Nutrients ; 11(4)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30995824

ABSTRACT

Supplementation with inulin-propionate ester (IPE), which delivers propionate to the colon, suppresses ad libitum energy intake and stimulates the release of satiety hormones acutely in humans, and prevents weight gain. In order to determine whether IPE remains effective when incorporated into food products (FP), IPE needs to be added to a widely accepted food system. A bread roll and fruit smoothie were produced. Twenty-one healthy overweight and obese humans participated. Participants attended an acclimatisation visit and a control visit where they consumed un-supplemented food products (FP). Participants then consumed supplemented-FP, containing 10 g/d inulin or IPE for six days followed by a post-supplementation visit in a randomised crossover design. On study visits, supplemented-FP were consumed for the seventh time and ad libitum energy intake was assessed 420 min later. Blood samples were collected to assess hormones and metabolites. Resting energy expenditure (REE) was measured using indirect calorimetry. Taste and appearance ratings were similar between FP. Ad libitum energy intake was significantly different between treatments, due to a decreased intake following IPE-FP. These observations were not related to changes in blood hormones and metabolites. There was an increase in REE following IPE-FP. However, this effect was lost after correcting for changes in fat free mass. Our results suggest that IPE suppresses appetite and may alter REE following its incorporation into palatable food products.


Subject(s)
Appetite/drug effects , Basal Metabolism/drug effects , Dietary Supplements , Food Handling , Inulin/pharmacology , Obesity , Propionates/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Calorimetry, Indirect , Colon , Cross-Over Studies , Double-Blind Method , Energy Intake/drug effects , Female , Hormones/blood , Humans , Inulin/therapeutic use , Male , Middle Aged , Obesity/diet therapy , Obesity/metabolism , Obesity/physiopathology , Overweight , Propionates/therapeutic use , Rest , Satiety Response/drug effects , Taste
3.
Diabetes Obes Metab ; 21(2): 372-376, 2019 02.
Article in English | MEDLINE | ID: mdl-30098126

ABSTRACT

The short chain fatty acid (SCFA) propionate, produced through fermentation of dietary fibre by the gut microbiota, has been shown to alter hepatic metabolic processes that reduce lipid storage. We aimed to investigate the impact of raising colonic propionate production on hepatic steatosis in adults with non-alcoholic fatty liver disease (NAFLD). Eighteen adults were randomized to receive 20 g/d of an inulin-propionate ester (IPE), designed to deliver propionate to the colon, or an inulin control for 42 days in a parallel design. The change in intrahepatocellular lipid (IHCL) following the supplementation period was not different between the groups (P = 0.082), however, IHCL significantly increased within the inulin-control group (20.9% ± 2.9% to 26.8% ± 3.9%; P = 0.012; n = 9), which was not observed within the IPE group (22.6% ± 6.9% to 23.5% ± 6.8%; P = 0.635; n = 9). The predominant SCFA from colonic fermentation of inulin is acetate, which, in a background of NAFLD and a hepatic metabolic profile that promotes fat accretion, may provide surplus lipogenic substrate to the liver. The increased colonic delivery of propionate from IPE appears to attenuate this acetate-mediated increase in IHCL.


Subject(s)
Dietary Supplements , Fatty Acids, Volatile/pharmacology , Inulin/pharmacology , Non-alcoholic Fatty Liver Disease/diet therapy , Propionates/pharmacology , Adolescent , Adult , Aged , Esters/pharmacology , Female , Gastrointestinal Microbiome/drug effects , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Young Adult
4.
Diabetes Obes Metab ; 19(2): 257-265, 2017 02.
Article in English | MEDLINE | ID: mdl-27761989

ABSTRACT

AIMS: Diet-derived short chain fatty acids (SCFAs) improve glucose homeostasis in vivo, but the role of individual SCFAs and their mechanisms of action have not been defined. This study evaluated the effects of increasing colonic delivery of the SCFA propionate on ß-cell function in humans and the direct effects of propionate on isolated human islets in vitro. MATERIALS AND METHODS: For 24 weeks human subjects ingested an inulin-propionate ester that delivers propionate to the colon. Acute insulin, GLP-1 and non-esterified fatty acid (NEFA) levels were quantified pre- and post-supplementation in response to a mixed meal test. Expression of the SCFA receptor FFAR2 in human islets was determined by western blotting and immunohistochemistry. Dynamic insulin secretion from perifused human islets was quantified by radioimmunoassay and islet apoptosis was determined by quantification of caspase 3/7 activities. RESULTS: Colonic propionate delivery in vivo was associated with improved ß-cell function with increased insulin secretion that was independent of changes in GLP-1 levels. Human islet ß-cells expressed FFAR2 and propionate potentiated dynamic glucose-stimulated insulin secretion in vitro, an effect that was dependent on signalling via protein kinase C. Propionate also protected human islets from apoptosis induced by the NEFA sodium palmitate and inflammatory cytokines. CONCLUSIONS: Our results indicate that propionate has beneficial effects on ß-cell function in vivo, and in vitro analyses demonstrated that it has direct effects to potentiate glucose-stimulated insulin release and maintain ß-cell mass through inhibition of apoptosis. These observations support ingestion of propiogenic dietary fibres to maintain healthy glucose homeostasis.


Subject(s)
Apoptosis/drug effects , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Propionates/pharmacology , Receptors, Cell Surface/drug effects , Adult , Aged , Blotting, Western , Caspase 3/drug effects , Caspase 3/metabolism , Caspase 7/drug effects , Caspase 7/metabolism , Colon , Dietary Fats , Esters/pharmacology , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Volatile , Female , Glucagon-Like Peptide 1/drug effects , Glucagon-Like Peptide 1/metabolism , Humans , Immunohistochemistry , In Vitro Techniques , Insulin Secretion , Insulin-Secreting Cells/metabolism , Inulin/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Middle Aged , Receptors, Cell Surface/metabolism
5.
Am J Clin Nutr ; 104(1): 5-14, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27169834

ABSTRACT

BACKGROUND: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. OBJECTIVES: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. DESIGN: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level-dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). RESULTS: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. CONCLUSION: Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438.


Subject(s)
Appetite Regulation , Colon/metabolism , Corpus Striatum/metabolism , Cues , Energy Intake , Propionates/metabolism , Reward , Adult , Anticipation, Psychological , Appetite , Blood Glucose/metabolism , Cross-Over Studies , Gastrointestinal Hormones/blood , Glucagon-Like Peptide 1/blood , Humans , Insulin/blood , Inulin/pharmacology , Male , Meals , Middle Aged , Neural Pathways , Peptide YY/blood , Satiety Response
6.
Gut ; 64(11): 1744-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25500202

ABSTRACT

OBJECTIVE: The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. DESIGN: To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. RESULTS: Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. CONCLUSIONS: These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans. TRIAL REGISTRATION NUMBER: NCT00750438.


Subject(s)
Adiposity/drug effects , Appetite Regulation/drug effects , Body Weight Maintenance/drug effects , Colon/metabolism , Glucagon-Like Peptide 1/metabolism , Overweight/drug therapy , Peptide YY/metabolism , Propionates/administration & dosage , Cells, Cultured , Colon/cytology , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Propionates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...