Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 392: 122299, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32092649

ABSTRACT

Cationic surfactants are surface-active compounds that can be found in many products, including household and cleaning agents. As a consequence, they tend to be discarded into water streams, ultimately ending up in the aquatic environment. In spite of this environmental issue, studies describing their effects towards marine species are lacking. The aim of this study was therefore to evaluate the short-term exposure effects of two commercial cationic surfactants and three novel gemini surfactants on four marine species, the green microalgae Nannochloropsis gaditana and Tetraselmis chuii, the diatom Phaeodactylum tricornutum, and the crustacean Artemia salina. Furthermore, biodegradation and size distribution of the cationic surfactants in artificial seawater were also studied by UV-vis spectrophotometry and dynamic light scattering, respectively. Ecotoxicity tests revealed that the commercial cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide is toxic to all tested marine species while N-dodecyl-N,N,N-trimethylammonium chloride and 1,4-bis-[N-(1-dodecyl)-N,N-dimethylammoniummethyl]benzene dibromide showed the lowest toxicity among the tested cationic surfactants. Besides the novel insights regarding the effects caused by these five cationic surfactants, this work opens prospects for the replacement of commercially available surfactants by more environmentally friendly alternatives.


Subject(s)
Quaternary Ammonium Compounds/toxicity , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Artemia/drug effects , Biodegradation, Environmental , Chlorophyta/drug effects , Diatoms/drug effects , Microalgae/drug effects , Seawater
2.
J Appl Microbiol ; 122(5): 1207-1218, 2017 May.
Article in English | MEDLINE | ID: mdl-28251734

ABSTRACT

AIMS: The objective of this work was to assess the antibacterial effect of 2-mercaptobenzothiazole (MBT), used as model-biocide, immobilized in a layered double hydroxide (LDH) structure, under different conditions of pH and salinity, envisaging possible applications of the system in active antifouling and anticorrosion coatings. METHODS AND RESULTS: Biological effects of MBT immobilized in LDH were assessed by monitoring bacterial bioluminescence of cell suspensions of either Allivibrio fischeri or a recombinant strain of Escherichia coli, as a proxy for bacterial activity. Salinity (1, 2 and 3% NaCl) and pH (4, 5, 6 and 7) of the suspension media were experimentally manipulated and biocide release tests were performed in parallel. The release profiles obtained by UV-visible spectrophotometry indicated a fast release of biocide from MBT@LDH, slightly enhanced in 3% NaCl and under alkaline conditions. However, biological effects were more pronounced at 1% NaCl and at neutral pH. CONCLUSIONS: The release and toxic effect of MBT immobilized in LDH is dependent on the concentration of solutes in the suspension medium. SIGNIFICANCE AND IMPACT OF THE STUDY: The results confirm LDH as a biologically compatible material with potential to be used for biocide delivery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzothiazoles/pharmacology , Hydroxides/chemistry , Anti-Bacterial Agents/chemistry , Benzothiazoles/chemistry , Drug Compounding , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Kinetics , Nanostructures/chemistry
3.
Nanotechnology ; 24(41): 415502, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24045136

ABSTRACT

The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.


Subject(s)
Nanostructures/chemistry , Silicon Dioxide/chemistry , Corrosion , Phenolphthalein/chemistry , Porosity , Protons , Surface Properties
4.
ACS Appl Mater Interfaces ; 2(5): 1528-35, 2010 May.
Article in English | MEDLINE | ID: mdl-20455547

ABSTRACT

The present work reports the synthesis of layered double hydroxides (LDHs) nanocontainers loaded with different corrosion inhibitors (vanadate, phosphate, and 2-mercaptobenzothiazolate) and the characterization of the resulting pigments by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The anticorrosion activity of these nanocontainers with respect to aluminum alloy AA2024 was investigated by electrochemical impedance spectroscopy (EIS). The bare metallic substrates were immersed in dispersions of nanocontainers in sodium chloride solution and tested to understand the inhibition mechanisms and efficiency. The nanocontainers were also incorporated into commercial coatings used for aeronautical applications to study the active corrosion protection properties in systems of industrial relevance. The results show that an enhancement of the active protection effect can be reached when nanocontainers loaded with different inhibitors are combined in the same protective coating system.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Corrosion , Materials Testing
5.
ACS Appl Mater Interfaces ; 1(10): 2353-62, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20355873

ABSTRACT

Zn-Al and Mg-Al layered double hydroxides (LDHs) loaded with quinaldate and 2-mercaptobenzothiazolate anions were synthesized via anion-exchange reaction. The resulting compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. Spectrophotometric measurements demonstrated that the release of organic anions from these LDHs into the bulk solution is triggered by the presence of chloride anions, evidencing the anion-exchange nature of this process. The anticorrosion capabilities of LDHs loaded with organic inhibitors toward the AA2024 aluminum alloy were analyzed by electrochemical impedance spectroscopy. A significant reduction of the corrosion rate is observed when the LDH nanopigments are present in the corrosive media. The mechanism by which the inhibiting anions can be released from the LDHs underlines the versatility of these environmentally friendly structures and their potential application as nanocontainers in self-healing coatings.

6.
Langmuir ; 24(16): 8998-9005, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18646783

ABSTRACT

[Ni( salen)] complexes bearing different crown ether receptors were electropolymerized to give films whose voltammetric signatures responded to Ba2+. In line with DFT calculations, X-ray absorption spectroscopy (XAS) near the Ni K-edge showed the nickel local environment in the monomers and their corresponding polymers (in the presence or absence of barium) to be identical. However, the expectation of crown size-dependent barium local environment (based on geometry and donor atom availability) was not found. XAS near the Ba K-edge showed that Ba2+ in the films coordinated to only two oxygen donors, irrespective of crown size. This surprisingly low coordination number (compared to solution species) is accompanied by a higher barium/crown ratio than the anticipated 1:1 stoichiometry. The implications of these effects for design and performance of sensors based on metal ion recognition chemistry are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...