Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Bioelectrochemistry ; 147: 108210, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35872371

ABSTRACT

Monitoring microbial activity is essential for industrial and environmental applications to proceed efficiently. To minimize time and labor-intensive monitoring, a new paradigm is required for in-situ, real time analysis. Since bioconversion of organics is accomplished by microorganisms through the oxidation of feedstocks linked to the reduction of electron acceptors, microorganisms can be viewed as electrochemical catalysts. In this respect, cell membranes have an electrical potential, which is analogous to a conventional capacitor and linked dynamically to cellular activity. Here we demonstrate the use of electrochemical impedance spectrometry (EIS) and cyclic voltammetry (CV) for monitoring microbial metabolic activity in real time, in-situ. The effect of organic electron donors as a function of concentration to the physiological status of strains of Shewanella oneidensis was determined. In this study, the pyomelanin overproducer (S. oneidensis ΔhmgA) and the pyomelanin deficient mutant (S. oneidensis ΔmelA) were chosen due to different surface electrochemical characteristics along with differences in oxygen utilization efficiency. CV, relative admittance, phase shift and permittivity changed with growth status and correlated with electron flow from organic carbon sources and terminal electron acceptor availability. This work offers a novel and inexpensive approach to real time monitoring with the advantage of abundant data.


Subject(s)
Shewanella , Electricity , Electron Transport , Electrons , Oxidation-Reduction , Shewanella/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...