Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 156(8): 084504, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232205

ABSTRACT

X-ray scattering has been used to characterize glassy itraconazole (ITZ) prepared by cooling at different rates. Faster cooling produces ITZ glasses with lower (or zero) smectic order with more sinusoidal density modulation, larger molecular spacing, and shorter lateral correlation between the rod-like molecules. We find that each glass is characterized by not one, but two fictive temperatures Tf (the temperature at which a chosen order parameter is frozen in the equilibrium liquid). The higher Tf is associated with the regularity of smectic layers and lateral packing, while the lower Tf with the molecular spacings between and within smectic layers. This indicates that different structural features are frozen on different timescales. The two timescales for ITZ correspond to its two relaxation modes observed by dielectric spectroscopy: the slower δ mode (end-over-end rotation) is associated with the freezing of the regularity of molecular packing and the faster α mode (rotation about the long axis) with the freezing of the spacing between molecules. Our finding suggests a way to selectively control the structural features of glasses.

2.
Soft Matter ; 16(8): 2025-2030, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31998921

ABSTRACT

Liquid crystals (LCs) undergo fast phase transitions, almost without hysteresis, leading to the notion that it is difficult to bypass LC transitions. However, recent work on itraconazole has shown that a nematic-to-smectic phase transition can be frustrated or avoided at moderate cooling rates. At each cooling rate, the highest smectic order obtained is determined by the kinetic arrest of the end-over-end molecular rotation. We report that the same phenomenon occurs in the system saperconazole, an analog of itraconazole where each of the two Cl atoms is replaced by F. Saperconazole has a wider temperature range over which smectic order can develop before kinetic arrest, providing a stronger test of the previous conclusion. Together these results indicate a general principle for controlling LC order in organic glasses for electronic applications.

3.
Phys Rev Lett ; 120(5): 055502, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481153

ABSTRACT

Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K/s. The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.

4.
Pharm Res ; 35(1): 23, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305725

ABSTRACT

PURPOSE: Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. METHODS: The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. RESULTS: For indomethacin (weak acid, pKa = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pKa = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. CONCLUSIONS: Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.


Subject(s)
Excipients/chemistry , Gelatin/chemistry , Indomethacin/chemistry , Nanostructures/chemistry , Nifedipine/chemistry , Chemistry, Pharmaceutical/methods , Crystallization , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Microscopy/methods , Particle Size , Phase Transition , Solubility , Surface Properties
5.
IUCrJ ; 4(Pt 5): 555-559, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989712

ABSTRACT

Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.

6.
J Phys Chem B ; 120(27): 6842-7, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27267909

ABSTRACT

Previous work has shown that a surface wave on amorphous o-terphenyl (OTP) decays by viscous flow at high temperatures and by surface diffusion at low temperatures. We report that the surface mass transport can be efficiently suppressed by low-concentration polymers. Surface-grating decay has been measured for OTP containing 1 wt % polystyrene (PS, Mw = 1-8 kg/mol), which is miscible with OTP. The additive has no significant effect on the decay kinetics in the viscous-flow regime, but a significant effect in the surface-diffusion regime. In the latter case, surface evolution slows down and becomes nonexponential (decelerating over time). The effect increases with falling temperature and the molecular weight of PS. These results are attributed to the very different mobility of PS (slow) and OTP (fast) and their segregation during surface evolution, and relevant for understanding the surface mobility of multicomponent amorphous materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...