Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Mol Reprod Dev ; 90(7): 491-502, 2023 07.
Article in English | MEDLINE | ID: mdl-35775400

ABSTRACT

Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can negatively impact reproductive outcome, which is especially evident in primiparous sows causing a reduced second parity reproductive performance. The negative effects of the lactational NEB on reproductive performance can be partly explained by the influence of the premating metabolic state, during and after lactation, on the development of follicles from which oocytes will give rise to the next litter. In addition, the degree and type of body tissue mobilization during lactation that is, adipose tissue or lean mass, highly influences follicular development. Research investigating relations between the premating metabolic state and follicular and oocyte competence in modern hybrid sows, which experience higher metabolic demands during lactation, is limited. In this review we summarize current knowledge of physiological relations between the metabolic state of modern hybrid sows and follicular developmental competence. In addition, we discuss potential implications of these relations for current sow management strategies.


Subject(s)
Lactation , Reproduction , Pregnancy , Swine , Animals , Female , Litter Size , Weaning , Parity , Lactation/metabolism
2.
Microplast nanoplast ; 2(1): 12, 2022.
Article in English | MEDLINE | ID: mdl-35634037

ABSTRACT

Microplastics have been documented in drinking water, but their effects on human health from ingestion, or the concentrations at which those effects begin to manifest, are not established. Here, we report on the outcome of a virtual expert workshop conducted between October 2020 and October 2021 in which a comprehensive review of mammalian hazard studies was conducted. A key objective of this assessment was to evaluate the feasibility and confidence in deriving a human health-based threshold value to inform development of the State of California's monitoring and management strategy for microplastics in drinking water. A tiered approach was adopted to evaluate the quality and reliability of studies identified from a review of the peer-reviewed scientific literature. A total of 41 in vitro and 31 in vivo studies using mammals were identified and subjected to a Tier 1 screening and prioritization exercise, which was based on an evaluation of how each of the studies addressed various quality criteria. Prioritized studies were identified largely based on their application and reporting of dose-response relationships. Given that methods for extrapolating between in vitro and in vivo systems are currently lacking, only oral exposure in vivo studies were identified as fit-for-purpose within the context of this workshop. Twelve mammalian toxicity studies were prioritized and subjected to a Tier 2 qualitative evaluation by external experts. Of the 12 studies, 7 report adverse effects on male and female reproductive systems, while 5 reported effects on various other physiological endpoints. It is notable that the majority of studies (83%) subjected to Tier 2 evaluation report results from exposure to a single polymer type (polystyrene spheres), representing a size range of 0.040 to 20 µm. No single study met all desired quality criteria, but collectively toxicological effects with respect to biomarkers of inflammation and oxidative stress represented a consistent trend. While it was possible to derive a conservative screening level to inform monitoring activities, it was not possible to extrapolate a human-health-based threshold value for microplastics, which is largely due to concerns regarding the relative quality and reliability of current data, but also due to the inability to extrapolate data from studies using monodisperse plastic particles, such as polystyrene spheres to an environmentally relevant exposure of microplastics. Nevertheless, a conservative screening level value was used to estimate a volume of drinking water (1000 L) that could be used to support monitoring activities and improve our overall understanding of exposure in California's drinking water. In order to increase confidence in our ability to derive a human-health-based threshold value in the future, several research recommendations are provided, with an emphasis towards strengthening how toxicity studies should be conducted in the future and an improved understanding of human exposure to microplastics, insights critically important to better inform future risk assessments. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-022-00030-6.

3.
Ecotoxicol Environ Saf ; 239: 113623, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35567931

ABSTRACT

Bisphenol A (BPA) is an environmental endocrine disruptor. Recent studies have shown an association between decreased spermatogenesis and gut microbiota alteration. However, the potential associations and mechanisms of BPA exposure on spermatogenesis, hormone production, and gut microbiota remain unknown. This study aims to investigate BPA-induced male reproductive toxicity and the potential link with gut microbiota dysbiosis. Male Sprague Dawley rats were exposed to BPA at different doses by oral gavage for thirty consecutive days. The extent of testicular damage was evaluated by basic parameters of body weight and hematoxylin-eosin (H&E) staining. Next, we determined the mRNA levels and protein levels of apoptosis, histone-related factors, and mammalian target of rapamycin (mTOR) pathway in testes. Finally, 16 S rDNA sequencing was used to analyze gut microbiota composition after BPA exposure. BPA exposure damaged testicular histology, significantly decreased sperm count, and increased sperm abnormalities. In addition, BPA exposure caused oxidative stress and cell apoptosis in testes. The levels of histone (H2A, H3) were significantly increased, while ubiquitin histone H2A (ub-H2A) and ubiquitin histone H2B (ub-H2B) were markedly reduced. Furthermore, BPA activated the PI3K and AKT expression, but the protein expressions of mTOR and 4EBP1 in testes were inhibited significantly. Additionally, the relative abundance of class Gammaproteobacteria, and order Betaproteobacteriales was significantly higher when treated with a high dose of BPA compared to the control group, which was negatively correlated with testosterone level. This study highlights the relationship between BPA-induced reproductive toxicity and gut microbiota disorder and provides new insights into the prevention and treatment of BPA-induced reproductive damage.


Subject(s)
Benzhydryl Compounds , Gastrointestinal Microbiome , Histones , Animals , Benzhydryl Compounds/toxicity , Dysbiosis/chemically induced , Dysbiosis/metabolism , Histones/metabolism , Male , Phenols , Rats , Rats, Sprague-Dawley , Semen , TOR Serine-Threonine Kinases/metabolism , Testis , Ubiquitins/metabolism
5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808081

ABSTRACT

In the present investigation, we examined whether a change in whole body energy fluxes could affect ovarian follicular development, employing mice ectopically expressing uncoupling protein 1 in skeletal muscle (UCP1-TG). Female UCP1-TG and wild-type (WT) mice were dissected at the age of 12 weeks. Energy intake and expenditure, activity, body weight and length, and body composition were measured. Plasma insulin, glucose, leptin, plasma fibroblast growth factor 21 (FGF21) and plasma insulin-like growth factor 1 (IGF1) levels were analyzed and ovarian follicle and corpus luteum numbers were counted. IGF1 signaling was analyzed by immunohistochemical staining for the activation of insulin receptor substrate 1/2 (IRS1/2) and AKT. UCP1-TG female mice had increased energy expenditure, reduced body size, maintained adiposity, and decreased IGF1 concentrations compared to their WT littermates, while preantral and antral follicle numbers were reduced by 40% and 60%, respectively. Corpora lutea were absent in 40% of the ovaries of UCP1-TG mice. Phospho-IRS1, phospho-AKT -Ser473 and -Thr308 immunostaining was present in the granulosa cells of antral follicles in WT ovaries, but faint to absent in the antral follicles of UCP1-TG mice. In conclusion, the reduction in circulating IGF1 levels due to the ectopic expression of UCP1 is associated with reduced immunostaining of the IRS1-PI3/AKT pathway, which may negatively affect ovarian follicle development and ovulation.


Subject(s)
Energy Metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Uncoupling Protein 1/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Energy Intake/physiology , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Granulosa Cells/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Uncoupling Protein 1/genetics
6.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800928

ABSTRACT

Long non-coding RNAs (lncRNAs) play important roles in multiple biological processes including ovarian follicular development. Here we aimed to gain novel information regarding lncRNAs transcriptome profiles in porcine granulosa cells of advanced atretic antral (AA) and healthy antral (HA) follicles using RNA-seq. A total of 11,321 lncRNAs including 10,813 novel and 508 annotated lncRNAs were identified, of which 173 lncRNAs were differentially expressed (DE-lncRNAs); ten of these were confirmed by qRT-PCR. Gene Ontology indicated that DE-lncRNAs associated with developmental processes were highly enriched. Pathway analysis demonstrated predicted cis- and trans-targets of DE-lncRNAs. Potential mRNA targets of up-regulated DE-lncRNAs were mainly enriched in apoptosis related pathways, while targeted genes of downregulated DE-lncRNAs were primarily enriched in metabolism and ovarian steroidogenesis pathways. Linear regression analyses showed that expression of upregulated DE-lncRNAs was significantly associated with apoptosis related genes. NOVEL_00001850 is the most-downregulated DE-lncRNA (FDR = 0.04, FC = -6.53), of which miRNA binding sites were predicted. KEGG analysis of its downregulated target genes revealed that ovarian steroidogenesis was the second most highlighted pathway. qRT-PCR and linear regression analysis confirmed the expression and correlation of its potential targeted gene, CYP19A1, a key gene involved in estradiol synthesis. Our results indicate that lncRNAs may participate in granulosa cells apoptosis and thus antral follicular atresia.


Subject(s)
Apoptosis/genetics , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , RNA, Long Noncoding/genetics , Animals , Estrous Cycle/genetics , Female , Gene Expression Regulation , Gene Ontology , Linear Models , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Real-Time Polymerase Chain Reaction , Swine , Transcriptome , Up-Regulation
7.
Antioxidants (Basel) ; 10(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379347

ABSTRACT

One of the main causes of female infertility is a deregulated antral follicular atresia, a process of which the underlying molecular mechanisms are largely unknown. Our objective was therefore to characterize the complex transcriptome changes in porcine granulosa cells of healthy antral (HA) and advanced antral atretic (AA) follicles, using ELISA and RNA-Seq followed by qRT-PCR and immunohistochemistry. Granulosa cell RNA-Seq data revealed 2160 differentially expressed genes, 1483 with higher and 677 with lower mRNA concentrations in AA follicles. Bioinformatic analysis showed that the upregulated genes in AA follicles were highly enriched in inflammation and apoptosis processes, while the downregulated transcripts were mainly highlighted in the steroid biosynthesis pathway and response to oxidative stress processes including antioxidant genes (e.g., GSTA1, GCLC, GCLM, IDH1, GPX8) involved in the glutathione metabolism pathway and other redox-related genes (e.g., RRM2B, NDUFS4). These observations were confirmed by RT-qPCR and immunohistochemistry. Additionally, the granulosa cells of AA follicles express significantly stronger 8-OHdG immunostaining, a marker of oxidative DNA damage, implicating that oxidative stress may participate in follicular atresia. We hypothesize that the decrease in anti-apoptotic factors and steroid hormones coincides with increased oxidative stress markers and the expression of pro-apoptotic factors, all contributing to antral follicular atresia.

8.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717899

ABSTRACT

Circular RNAs (circRNAs) are thought to play essential roles in multiple biological processes, including apoptosis, an important process in antral follicle atresia. We aimed to investigate the potential involvement of circRNAs in granulosa cell apoptosis and thus antral follicle atresia. CircRNA expression profiles were generated from porcine granulosa cells isolated from healthy antral (HA) and atretic antral (AA) follicles. Over 9632 circRNAs were identified, of which 62 circRNAs were differentially expressed (DE-circRNAs). Back-splicing, RNase R resistance, and stability of DE-circRNAs were validated, and miRNA binding sites and related target genes were predicted. Two exonic circRNAs with low false discovery rate (FDR) high fold change, miRNA binding sites, and relevant biological functions-circ_CBFA2T2 and circ_KIF16B-were selected for further characterization. qRT-PCR and linear regression analysis confirmed expression and correlation of the targeted genes-the antioxidant gene GCLC (potential target of circ_CBFA2T2) and the apoptotic gene TP53 (potential target of circ_KIF16B). Increased mRNA content of TP53 in granulosa cells of AA follicles was further confirmed by strong immunostaining of both p53 and its downstream target pleckstrin homology like domain family a member 3 (PHLDA3) in AA follicles compared to negligible staining in granulosa cells of HA follicles. Therefore, we concluded that aberrantly expressed circRNAs presumably play a potential role in antral follicular atresia.


Subject(s)
Apoptosis , Follicular Atresia , Gene Expression Regulation , Granulosa Cells/metabolism , RNA, Circular/biosynthesis , Transcriptome , Animals , Female , Granulosa Cells/cytology , Swine
9.
Andrology ; 8(5): 1265-1276, 2020 09.
Article in English | MEDLINE | ID: mdl-32416031

ABSTRACT

BACKGROUND: Origin of human adult Leydig cells (ALCs) is not well understood. This might be partly due to limited data available on the identification and location of human precursor and stem Leydig cells (SLCs) which hampers the study on the development of ALCs. OBJECTIVES: The aim of the present study was to investigate whether described human (PDGFRα, NGFR) and rodent (NES, PDGFRα, THY1, NR2F2) SLC markers are expressed by a common cell population within human adult testicular interstitial cells in vivo and before and after in vitro propagation. MATERIALS AND METHODS: Immunohistochemical analyses were used to identify localization of human adult testicular interstitial cells expressing described SLC markers. Next, interstitial cells were isolated and cultured. The percentage of cells expressing one or more SLC markers was determined before and after culture using flow cytometry. RESULTS: NR2F2 and PDGFRα were present in peritubular, perivascular, and Leydig cells, while THY1 was expressed in peritubular and perivascular cells. Although NES and NGFR were expressed in endothelial cells, co-localization with PDGFRα was found for both in vitro, although for NGFR only after culture. All marker positive cells were able to undergo propagation in vitro. DISCUSSION: The partly overlap in localization and overlap in expression in human testicular cells indicate that PDGFRα, NR2F2, and THY1 are expressed within the same ALC developmental lineage from SLCs. Based on the in vitro results, this is also true for NES and after in vitro propagation for NGFR. CONCLUSION: Our results that earlier described SLC markers are expressed in overlapping human interstitial cell population opens up further research strategies aiming for a better insight in the Leydig cell lineage and will be helpful for development of strategies to cure ALC dysfunction.


Subject(s)
Biomarkers/analysis , Leydig Cells/cytology , Stem Cells/cytology , Testis/cytology , Cell Lineage , Humans , Male
10.
Physiol Rep ; 7(24): e14320, 2019 12.
Article in English | MEDLINE | ID: mdl-31883224

ABSTRACT

The aim of this study was to identify follicular fluid (FF) steroids which reflect follicular development in the early stages of the follicular phase and to establish whether the levels of these FF steroids correspond to their levels in serum. If these relations are established, serum steroid profiles may be used to monitor follicular development already in this early stage of the follicular phase. We used samples of two experiments, one with multiparous sows at the onset of the follicular phase (weaning) and one with primiparous sows at the midfollicular phase (48 hr after weaning). Complete steroid profiles were measured in pooled FF of the 15 largest follicles and serum using high-performance liquid chromatography-tandem mass spectrometry. In experiment 1, pooled FF volume, as a measure for average follicle size, tended to be positively related to higher FF 17ß-estradiol levels (ß = 0.56, p = .08). In experiment 2, a larger FF volume was related not only to FF higher 17ß-estradiol levels (ß = 2.11, p < .001) but also to higher levels of ß-nortestosterone (ß = 1.15, p < .0001) and its metabolite 19-norandrostenedione (ß = 1.27, p < .01). In addition, FF volume was related to higher FF 17α-OH-pregnenolone (ß = 1.63, p = .03) and 17α-OH-progesterone (ß = 1.83, p < .001), which could indicate that CYP17,20-lyase activity is limiting for 17ß-estradiol production in larger follicles at the beginning of the follicular phase. In serum, most of the steroids were present at lower levels compared to FF, except for the corticosteroids. Serum progestins and androgens were never related to follicle pool volume and steroid levels did not differ in the midfollicular phase compared to the onset of the follicular phase in the second experiment. Serum steroid levels therefore poorly reflect the developmental stage of the follicle pool in the first half of the follicular phase of the estrous cycle in sows.


Subject(s)
Androstenedione/analogs & derivatives , Estradiol/blood , Follicular Fluid/metabolism , Pregnenolone/blood , Progesterone/blood , Androstenedione/blood , Androstenedione/metabolism , Animals , Estradiol/metabolism , Female , Pregnenolone/metabolism , Progesterone/metabolism , Sexual Development , Swine
11.
PLoS One ; 13(7): e0197894, 2018.
Article in English | MEDLINE | ID: mdl-30063719

ABSTRACT

BACKGROUND: Anti-Müllerian hormone (AMH) is expressed by granulosa cells of developing follicles and plays an inhibiting role in the cyclic process of follicular recruitment by determining follicle-stimulating hormone threshold levels. Knowledge of AMH expression in the porcine ovary is important to understand the reproductive efficiency in female pigs. RESEARCH AIM: In the present study we investigated the expression of AMH during follicular development in prepubertal and adult female pigs by immunohistochemistry, laser capture micro-dissection and RT-qPCR. RESULTS AND CONCLUSION: Although in many aspects the immunohistochemical localization of AMH in the porcine ovary does not differ from other species, there are also some striking differences. As in most species, AMH appears for the first time during porcine follicular development in the fusiform granulosa cells of recruited primordial follicles and continues to be present in granulosa cells up to the antral stage. By the time follicles reach the pre-ovulatory stage, AMH staining intensity increases significantly, and both protein and gene expression is not restricted to granulosa cells; theca cells now also express AMH. AMH continues to be expressed after ovulation in the luteal cells of the corpus luteum, a phenomenon unique to the porcine ovary. The physiological function of AMH in the corpus luteum is at present not clear. One can speculate that it may contribute to the regulation of the cyclic recruitment of small antral follicles. By avoiding premature exhaustion of the ovarian follicular reserve, AMH may contribute to optimization of reproductive performance in female pigs.


Subject(s)
Anti-Mullerian Hormone/genetics , Corpus Luteum/metabolism , Follicle Stimulating Hormone/genetics , Genetic Fitness , Granulosa Cells/metabolism , Theca Cells/metabolism , Animals , Anti-Mullerian Hormone/metabolism , Corpus Luteum/cytology , Female , Follicle Stimulating Hormone/metabolism , Gene Expression Regulation, Developmental , Granulosa Cells/cytology , Immunohistochemistry , Ovulation/genetics , Pregnancy , Swine , Theca Cells/cytology
12.
Biol Reprod ; 99(4): 853-863, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29767707

ABSTRACT

There is a general agreement that granulosa cell apoptosis is the cause of antral follicle attrition. Less clear is whether this pathway is also activated in case of preantral follicle degeneration, as several reports mention that the incidence of granulosa cell apoptosis in preantral follicles is negligible. Our objective is therefore to determine which cell-death pathways are involved in preantral and antral follicular degeneration.Atretic preantal and antral follicles were investigated using immunohistochemistry and laser-capture microdissection followed by quantitative real-time reverse transcription polymerase chain reaction. Microtubule-associated light-chain protein 3 (LC3), sequestosome 1 (SQSTM1/P62), Beclin1, autophagy-related protein 7 (ATG7), and cleaved caspase 3 (cCASP3) were used as markers for autophagy and apoptosis, respectively. P62 immunostaining was far less intense in granulosa cells of atretic compared to healthy preantral follicles, while no difference in LC3 and BECLIN1 immunostaining intensity was observed. This difference in P62 immunostaining was not observed in atretic antral follicles. mRNA levels of LC3 and P62 were not different between healthy and atretic (pre)antral follicles. ATG7 immunostaining was observed in granulosa cells of preantral atretic follicles, not in granulosa cells of degenerating antral follicles. The number of cCASP3-positive cells was negligible in preantral atretic follicles, while numerous in atretic antral follicles. Taken together, we conclude that preantral and antral follicular atresia is the result of activation of different cell-death pathways as antral follicular degeneration is initiated by massive granulosa cell apoptosis, while preantral follicular atresia occurs mainly via enhanced granulosa cell autophagy.


Subject(s)
Follicular Atresia/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Autophagy/genetics , Autophagy/physiology , Biomarkers/metabolism , Caspase 3/metabolism , Female , Follicular Atresia/genetics , Gene Expression , Granulosa Cells/cytology , Granulosa Cells/metabolism , Immunohistochemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
13.
Front Physiol ; 8: 323, 2017.
Article in English | MEDLINE | ID: mdl-28588502

ABSTRACT

Transient neonatal 6-propyl-2-thiouracil (PTU) induced hypothyroidism affects Leydig and Sertoli cell numbers in the developing testis, resulting in increased adult testis size. The hypothyroid condition was thought to be responsible, an assumption questioned by studies showing that uninterrupted fetal/postnatal hypothyroidism did not affect adult testis size. Here, we investigated effects of transient hypothyroidism on Leydig and Sertoli cell development, employing a perinatal iodide-deficient diet in combination with sodium perchlorate. This hypothyroidism inducing diet was continued until days 1, 7, 14, or 28 postpartum (pp) respectively, when the rats were switched to a euthyroid diet and followed up to adulthood. Continuous euthyroid and hypothyroid, and neonatal PTU-treated rats switched to the euthyroid diet at 28 days pp, were included for comparison. No effects on formation of the adult-type Leydig cell population or on Sertoli cell proliferation and differentiation were observed when the diet switched at/or before day 14 pp. However, when the diet was discontinued at day 28 pp, Leydig cell development was delayed similarly to what was observed in chronic hypothyroid rats. Surprisingly, Sertoli cell proliferation was 6- to 8-fold increased 2 days after the diet switch and remained elevated the next days. In adulthood, Sertoli cell number per seminiferous tubule cross-section and consequently testis weight was increased in this group. These observations implicate that increased adult testis size in transiently hypothyroid rats is not caused by the hypothyroid condition per se, but originates from augmented Sertoli cell proliferation as a consequence of rapid normalization of thyroid hormone concentrations.

14.
J Ovarian Res ; 10(1): 19, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28302175

ABSTRACT

BACKGROUND: There is substantial evidence both in humans and in animals that a prolonged reduction in plasma thyroid hormone concentration leads to reproductive problems, including disturbed folliculogenesis, impaired ovulation and fertilization rates, miscarriage and pregnancy complications. The objective of the present study is to examine the consequences of chronic hypothyroidism, induced in adulthood, for the size of the ovarian follicle pool. In order to investigate this, adult female rats were provided either a control or an iodide deficient diet in combination with perchlorate supplementation to inhibit iodide uptake by the thyroid. Sixteen weeks later animals were sacrificed. Blood was collected for hormone analyses and ovaries were evaluated histologically. RESULTS: At the time of sacrifice, plasma thyroid-stimulating hormone concentrations were 20- to 40-fold increased, thyroxine concentrations were negligible while tri-iothyronin concentrations were decreased by 40% in the hypothyroid group, confirming that the animals were hypothyroid. Primordial, primary and preantral follicle numbers were significantly lower in the hypothyroid ovaries compared to the euthyroid controls, while a downward trend in antral follicle and corpora lutea numbers was observed. Surprisingly the percentage of atretic follicles was not significantly different between the two groups, suggesting that the reduced preantral and antral follicle numbers were presumably not the consequence of increased degeneration of these follicle types in the hypothyroid group. Plasma anti-Müllerian hormone (AMH) levels showed a significant correlation with the growing follicle population represented by the total ovarian number of primary, preantral and antral follicles, suggesting that also under hypothyroid conditions AMH can serve as a surrogate marker to assess the growing ovarian follicle population. CONCLUSIONS: The induction of a chronic hypothyroid condition in adult female rats negatively affects the ovarian follicular reserve and the size of the growing follicle population, which may impact fertility.


Subject(s)
Hypothyroidism/physiopathology , Ovarian Follicle/physiopathology , Ovarian Reserve , Ovary/physiopathology , Animals , Anti-Mullerian Hormone/blood , Disease Models, Animal , Female , Gonadal Steroid Hormones/blood , Hypothyroidism/blood , Hypothyroidism/etiology , Ovarian Follicle/pathology , Ovary/pathology , Rats , Thyroid Hormones/blood , Thyrotropin/blood
15.
Biol Reprod ; 94(4): 90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26962119

ABSTRACT

The long-term effects of chronic hypothyroidism on ovarian follicular development in adulthood are not well known. Using a rat model of chronic diet-induced hypothyroidism initiated in the fetal period, we investigated the effects of prolonged reduced plasma thyroid hormone concentrations on the ovarian follicular reserve and ovulation rate in prepubertal (12-day-old) and adult (64-day-old and 120-day-old) rats. Besides, antioxidant gene expression, mitochondrial density and the occurrence of oxidative stress were analyzed. Our results show that continuous hypothyroidism results in lower preantral and antral follicle numbers in adulthood, accompanied by a higher percentage of atretic follicles, when compared to euthyroid age-matched controls. Not surprisingly, ovulation rate was lower in the hypothyroid rats. At the age of 120 days, the mRNA and protein content of superoxide dismutase 1 (SOD1) were significantly increased while catalase (CAT) mRNA and protein content was significantly decreased, suggesting a disturbed antioxidant defense capacity of ovarian cells in the hypothyroid animals. This was supported by a significant reduction in the expression of peroxiredoxin 3 ( ITALIC! Prdx3), thioredoxin reductase 1 ( ITALIC! Txnrd1), and uncoupling protein 2 ( ITALIC! Ucp2) and a downward trend in glutathione peroxidase 3 ( ITALIC! Gpx3) and glutathione S-transferase mu 2 ( ITALIC! Gstm2) expression. These changes in gene expression were likely responsible for the increased immunostaining of the oxidative stress marker 4-hydroxynonenal. Together these results suggest that chronic hypothyroidism initiated in the fetal/neonatal period results in a decreased ovulation rate associated with a disturbance of the antioxidant defense system in the ovary.


Subject(s)
Hypothyroidism/physiopathology , Ovarian Follicle/growth & development , Ovulation , Oxidative Stress , Animals , Antioxidants/metabolism , Body Weight , Female , Follicle Stimulating Hormone/blood , Gene Expression , Hypothyroidism/etiology , Hypothyroidism/metabolism , Luteinizing Hormone/blood , Rats, Wistar , Sexual Maturation , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
16.
Hum Reprod Update ; 21(3): 310-28, 2015.
Article in English | MEDLINE | ID: mdl-25724971

ABSTRACT

BACKGROUND: Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. METHODS: Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. RESULTS: Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. CONCLUSION: Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions.


Subject(s)
Leydig Cells/cytology , Leydig Cells/physiology , Sexual Maturation/physiology , Spermatogenesis/physiology , Testis/embryology , Androgens/biosynthesis , Animals , Fetal Stem Cells/cytology , Humans , Leydig Cells/metabolism , Male , Mice , Models, Animal , Paracrine Communication/physiology , Primates , Rats , Testosterone/biosynthesis
17.
Asian J Androl ; 17(2): 219-20, 2015.
Article in English | MEDLINE | ID: mdl-25412675

ABSTRACT

Disruption of normal fetal development can influence functioning of organs and cells in adulthood. Circumstantial evidence suggests that subtle reductions in fetal androgen production may be the cause of adult male reproductive disorders due to reduced testosterone production. The mechanisms through which these fetal events affect adult testosterone levels are largely unknown. A recent paper of Kilcoyne et al. provides evidence that fetal reduction in androgen production or signaling results in a reduced Leydig stems cell number after birth and concomitant Leydig cell failure in adulthood. This implies that fetal androgen deficiency can lead to negative programming of adult Leydig cell (ALC) function, which may have implications for general health, aging, and longevity.


Subject(s)
Adult Stem Cells/physiology , Androgens/physiology , Fetal Development/physiology , Leydig Cells/physiology , Animals , Female , Humans , Male , Pregnancy
18.
Endocrinology ; 155(3): 676-87, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24428532

ABSTRACT

For several decades antibodies raised against specific proteins, peptides, or peptide epitopes have proven to be versatile and very powerful tools to demonstrate molecular identity in cells and tissues. New techniques of immunohistochemistry and immunofluorescence have improved both the optical resolution of such protein identification as well as its sensitivity, particularly through the use of amplification methodology. However, this improved sensitivity has also increased the risks of false-positive and false-negative staining and thereby raised the necessity for proper and adequate controls. In this review, the authors draw on many years of experience to illuminate many of the more common errors and problematic issues in immunohistochemistry, and how these may be avoided. A key factor in all of this is that techniques need to be properly documented and especially antibodies and procedures must be adequately described. Antibodies are a valuable and shared resource within the scientific community; it is essential therefore that mistakes involving antibodies and their controls are not perpetuated through inadequate reporting in the literature.


Subject(s)
Antibodies/immunology , Immunohistochemistry/instrumentation , Immunohistochemistry/methods , Adsorption , Animals , Antibodies/chemistry , Antigens/chemistry , Epitopes/chemistry , Humans , Mice, Knockout , Microscopy, Fluorescence/methods , Staining and Labeling/methods
19.
Mol Nutr Food Res ; 58(4): 799-807, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24243645

ABSTRACT

SCOPE: Mice are usually housed at 20-24 °C. At thermoneutrality (28 °C) larger diet-induced differences in obesity are seen. We tested whether this leads to large differences in metabolic health parameters. METHODS AND RESULTS: We performed a 14-wk dietary intervention in C57BL/6J mice at 28 °C and assessed adiposity and metabolic health parameters for a semipurified low fat (10 energy%) diet and a moderate high fat (30 energy%) diet. A large and significant diet-induced differential increase in body weight, adipose tissue mass, adipocyte size, serum leptin level, and, to some extent, cholesterol level was observed. No adipose tissue inflammation was seen. No differential effect of the diets on serum glucose, free fatty acids, triacylglycerides, insulin, adiponectin, resistin, PAI-1, MMP-9, sVCAM-1, sICAM-1, sE-selectin, IL-6, ApoE, fibrinogen levels, or HOMA index was observed. Also in muscle no differential effect on mitochondrial density, mitochondrial respiratory control ratio, or mRNA expression of metabolic genes was found. Finally, in liver no differential effect on weight, triacylglycerides level, aconitase/citrate synthase activity ratio was seen. CONCLUSION: Low fat diet and moderate high fat diet induce prominent body weight differences at thermoneutrality, which is not paralleled by metabolic differences. Our data rather suggest that thermoneutrality alters metabolic homeostasis.


Subject(s)
Adipose Tissue/metabolism , Body Weight/drug effects , Diet, High-Fat , Aconitate Hydratase/metabolism , Adiponectin/blood , Adipose Tissue/drug effects , Animals , Body Temperature Regulation/drug effects , Diet, Fat-Restricted , Energy Metabolism/drug effects , Fatty Acids/metabolism , Leptin/metabolism , Male , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
20.
Reprod Toxicol ; 39: 63-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23612449

ABSTRACT

From 15 to 17 June 2011, a dedicated workshop was held on the subject of in vitro models for mammalian spermatogenesis and their applications in toxicological hazard and risk assessment. The workshop was sponsored by the Dutch ASAT initiative (Assuring Safety without Animal Testing), which aims at promoting innovative approaches toward toxicological hazard and risk assessment on the basis of human and in vitro data, and replacement of animal studies. Participants addressed the state of the art regarding human and animal evidence for compound mediated testicular toxicity, reviewed existing alternative assay models, and brainstormed about future approaches, specifically considering tissue engineering. The workshop recognized the specific complexity of testicular function exemplified by dedicated cell types with distinct functionalities, as well as different cell compartments in terms of microenvironment and extracellular matrix components. This complexity hampers quick results in the realm of alternative models. Nevertheless, progress has been achieved in recent years, and innovative approaches in tissue engineering may open new avenues for mimicking testicular function in vitro. Although feasible, significant investment is deemed essential to be able to bring new ideas into practice in the laboratory. For the advancement of in vitro testicular toxicity testing, one of the most sensitive end points in regulatory reproductive toxicity testing, such an investment is highly desirable.


Subject(s)
Animal Testing Alternatives , Testis/cytology , Toxicity Tests/methods , Animals , Cell Culture Techniques , Humans , Male , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...