Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Oecologia ; 113(2): 247-251, 1998 Jan.
Article in English | MEDLINE | ID: mdl-28308204

ABSTRACT

We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose.

3.
New Phytol ; 129(2): 253-263, 1995 Feb.
Article in English | MEDLINE | ID: mdl-33874550

ABSTRACT

Two important processes which may limit productivity gains in forest ecosystems with rising atmospheric CO2 are reduction in photosynthetic capacity following prolonged exposure to high CO2 and diminution of positive growth responses when soil nutrients, particularly N, are limiting. To examine the interacting effects of soil fertility and CO2 enrichment on photosynthesis and growth in trees we grew hybrid poplar (Populus × euramericana) for 158 d in the field at ambient and twice ambient CO2 and in soil with low or high N availability. We measured the timing and rate of canopy development, the seasonal dynamics of leaf level photosynthetic capacity, respiration, and N and carbohydrate concentration, and final above- and belowground dry weight. Single leaf net CO2 assimilation (A) increased at elevated CO2 over the majority of the growing season in both fertility treatments. At high fertility, the maximum size of individual leaves, total leaf number, and seasonal leaf area duration (LAD) also increased at elevated CO2 , leading to a 49% increase in total dry weight. In contrast, at low fertility leaf area growth was unaffected by CO2 treatment. Total dry weight nonetheless increased 25% due to CO2 effects on A. Photosynthetic capacity (A at constant internal p(CO2 ), ((C1 )) was reduced in high CO2 plants after 100 d growth at low fertility and 135 d growth at high fertility. Analysis of A responses to changing C1 indicated that this negative adjustment of photosynthesis was due to a reduction in the maximum rate of CO2 fixation by Rubisco. Maximum rate of electron transport and phosphate regeneration capacity were either unaffected or declined at elevated CO2 . Carbon dioxide effects on leaf respiration were most pronounced at high fertility, with increased respiration mid-season and no change (area basis) or reduced (mass basis) respiration late-season in elevated compared to ambient CO2 plants. This temporal variation correlated with changes in leaf N concentration and leaf mass per area. Our results demonstrate the importance of considering both structural and physiological pathways of net C gain in predicting tree responses to rising CO2 under conditions of suboptimal soil fertility.

4.
Oecologia ; 70(2): 198-204, 1986 Sep.
Article in English | MEDLINE | ID: mdl-28311658

ABSTRACT

Sedum wrightii is one of only a few species in the Crassulaceae for which there is evidence for a high degree of variability in the ratio of daytime to nighttime CO2 assimilation. There are both environmental and genetic components to this variability. S. wrightii grows over a wide altitudinal gradient. The purpose of this study was to compare low, intermediate, and high altitude populations with respect to the degree of CAM expression and the capability to tolerate limited water availability. We utilized clonallyreplicated genotypes of plants from each population in common environment greenhouse experiments. Genetic differences among the populations were found in long-term water use efficiency, in 24 hour CO2 exchange patterns, in biomass δ13C values, in carbon allocation, and in water status and ultimately survival during prolonged drought. The differences among the populations appear to be closely related to differences in the native habitats. The low altitude, desert plants had the greatest ability to grow and survive under conditions of limited water availability and appear to have the greatest shift to nighttime CO2 uptake during periods without water, while the high altitude plants had the poorest performance under these conditions and appear to shut down net carbon uptake when severely water limited.

5.
Oecologia ; 64(1): 74-77, 1984 Sep.
Article in English | MEDLINE | ID: mdl-28311641

ABSTRACT

Three populations of the grass Danthonia spicata were observed to have different rates of biomass accumulation when grown in common environment treatments. The populations were native to adjacent sites of different successional age and different levels of shading. Twelve individuals from each population were clonally replicated and two replicates were grown in each of two light treatments, 100% and 22% of unshaded sunlight. Following growth in the treatments the populations all exhibited the same mean light-saturated photosynthetic rate of 11.7 µmol m-2s-1. This rate is intermediate for published values of sun and shade species and for species from along a successional gradient. There was no difference in photosynthetic rate among treatments. There was significant genetic variation for lightsaturated photosynthetic rate within populations but no significant differences among populations. The populations had similar leaf water potential values of-1.12 MPa in all treatments. There were significant differences among treatments and genotypes for specific leaf weight which resulted in significant differences among treatments and no significant differences among genotypes in light-saturated photosynthetic rate expressed on a leaf weight basis. Lightsaturated photosynthetic rate had a high heritability and low plasticity. We postulate that photosynthetic rate is under strong selection and that the observed rates permit populations of D. spicata to grow in a wide range of habitat light levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...