Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 16(3): 560-568, 2023 03.
Article in English | MEDLINE | ID: mdl-36420671

ABSTRACT

Shewanella oneidensis MR-1 is a promising chassis organism for microbial electrosynthesis because it has a well-defined biochemical pathway (the Mtr pathway) that can connect extracellular electrodes to respiratory electron carriers inside the cell. We previously found that the Mtr pathway can be used to transfer electrons from a cathode to intracellular electron carriers and drive reduction reactions. In this work, we hypothesized that native NADH dehydrogenases form an essential link between the Mtr pathway and NADH in the cytoplasm. To test this hypothesis, we compared the ability of various mutant strains to accept electrons from a cathode and transfer them to an NADH-dependent reaction in the cytoplasm, reduction of acetoin to 2,3-butanediol. We found that deletion of genes encoding NADH dehydrogenases from the genome blocked electron transfer from a cathode to NADH in the cytoplasm, preventing the conversion of acetoin to 2,3-butanediol. However, electron transfer to fumarate was not blocked by the gene deletions, indicating that NADH dehydrogenase deletion specifically impacted NADH generation and did not cause a general defect in extracellular electron transfer. Proton motive force (PMF) is linked to the function of the NADH dehydrogenases. We added a protonophore to collapse PMF and observed that it blocked inward electron transfer to acetoin but not fumarate. Together these results indicate a link between the Mtr pathway and intracellular NADH. Future work to optimize microbial electrosynthesis in S. oneidensis MR-1 should focus on optimizing flux through NADH dehydrogenases.


Subject(s)
Electrons , Shewanella , Oxidation-Reduction , NAD/metabolism , Acetoin/metabolism , Electron Transport/genetics , Shewanella/genetics , Oxidoreductases/metabolism
2.
J Bacteriol ; 203(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33753469

ABSTRACT

The instability of Shigella genomes has been described, but how this instability causes phenotypic differences within the Shigella flexneri species is largely unknown and likely variable. We describe herein the genome of S. flexneri strain PE577, originally a clinical isolate, which exhibits several phenotypic differences compared to the model strain 2457T. Like many previously described strains of S. flexneri, PE577 lacks discernible, functional CRISPR and restriction-modification systems. Its phenotypic differences when compared to 2457T include lower transformation efficiency, higher oxygen sensitivity, altered carbon metabolism, and greater susceptibility to a wide variety of lytic bacteriophage isolates. Since relatively few Shigella phages have been isolated on 2457T or the previously characterized strain M90T, developing a more universal model strain for isolating and studying Shigella phages is critical to understanding both phages and phage-host interactions. In addition to phage biology, the genome sequence of PE577 was used to generate and test hypotheses of how pseudogenes in this strain-whether interrupted by degraded prophages, transposases, frameshifts, or point mutations-have led to metabolic rewiring compared to the model strain 2457T. Results indicate that PE577 can utilise the less-efficient pyruvate oxidase/acetyl-CoA synthetase (PoxB/Acs) pathway to produce acetyl-CoA, while strain 2457T cannot due to a nonsense mutation in acs, rendering it a pseudogene in this strain. Both strains also utilize pyruvate-formate lyase to oxidize formate but cannot survive with this pathway alone, possibly because a component of the formate-hydrogen lyase (fdhF) is a pseudogene in both strains.Importance Shigella causes millions of dysentery cases worldwide, primarily affecting children under five years old. Despite active research in developing vaccines and new antibiotics, relatively little is known about the variation of physiology or metabolism across multiple isolates. In this work, we investigate two strains of S. flexneri that share 98.9% genetic identity but exhibit drastic differences in metabolism, ultimately affecting the growth of the two strains. Results suggest additional strains within the S. flexneri species utilize different metabolic pathways to process pyruvate. Metabolic differences between these closely-related isolates suggest an even wider variety of differences in growth across S. flexneri and Shigella in general. Exploring this variation further may assist the development or application of vaccines and therapeutics to combat Shigella infections.

3.
ACS Synth Biol ; 8(7): 1590-1600, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31243980

ABSTRACT

Microbial electrosynthesis is an emerging technology with the potential to simultaneously store renewably generated energy, fix carbon dioxide, and produce high-value organic compounds. However, limited understanding of the route of electrons into the cell remains an obstacle to developing a robust microbial electrosynthesis platform. To address this challenge, we leveraged the native extracellular electron transfer pathway in Shewanella oneidensis MR-1 to connect an extracellular electrode with an intracellular reduction reaction. The system uses native Mtr proteins to transfer electrons from an electrode to the inner membrane quinone pool. Subsequently, electrons are transferred from quinones to NAD+ by native NADH dehydrogenases. This reverse functioning of NADH dehydrogenases is thermodynamically unfavorable; therefore, we added a light-driven proton pump (proteorhodopsin) to generate proton-motive force to drive this activity. Finally, we use reduction of acetoin to 2,3-butanediol via a heterologous butanediol dehydrogenase (Bdh) as an electron sink. Bdh is an NADH-dependent enzyme; therefore, observation of acetoin reduction supports our hypothesis that cathodic electrons are transferred to intracellular NAD+. Multiple lines of evidence indicate proper functioning of the engineered electrosynthesis system: electron flux from the cathode is influenced by both light and acetoin availability, and 2,3-butanediol production is highest when both light and a poised electrode are present. Using a hydrogenase-deficient S. oneidensis background strain resulted in a stronger correlation between electron transfer and 2,3-butanediol production, suggesting that hydrogen production is an off-target electron sink in the wild-type background. This system represents a promising step toward a genetically engineered microbial electrosynthesis platform and will enable a new focus on synthesis of specific compounds using electrical energy.


Subject(s)
Acetoin/metabolism , Electron Transport/physiology , Alcohol Oxidoreductases/metabolism , Electrodes , Electrons , NAD/metabolism , NADH, NADPH Oxidoreductases/metabolism , Shewanella/metabolism
4.
Appl Environ Microbiol ; 84(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29654176

ABSTRACT

Shewanella oneidensis MR-1 is a metal-reducing bacterium with the ability to utilize many different terminal electron acceptors, including oxygen and solid-metal oxides. Both metal oxide reduction and aerobic respiration have been studied extensively in this organism. However, electron transport chain processes upstream of the terminal oxidoreductases have been relatively understudied in this organism, especially electron transfer from NADH to respiratory quinones. Genome annotation indicates that S. oneidensis MR-1 encodes four NADH dehydrogenases, a proton-translocating dehydrogenase (Nuo), two sodium ion-translocating dehydrogenases (Nqr1 and Nqr2), and an "uncoupling" dehydrogenase (Ndh), but none of these complexes have been studied. Therefore, we conducted a study specifically focused on the effects of individual NADH dehydrogenase knockouts in S. oneidensis MR-1. We observed that two of the single-mutant strains, the ΔnuoN and ΔnqrF1 mutants, exhibited significant growth defects compared with the wild type. However, the defects were minor and only apparent under certain growth conditions. Further testing of the ΔnuoN ΔnqrF1 double-mutant strain yielded no growth in minimal medium under oxic conditions, indicating that Nuo and Nqr1 have overlapping functions, but at least one is necessary for aerobic growth. Coutilization of proton- and sodium ion-dependent energetics has important implications for the growth of this organism in environments with varied pH and salinity, including microbial electrochemical systems.IMPORTANCE Bacteria utilize a wide variety of metabolic pathways that allow them to take advantage of different energy sources, and to do so with varied efficiency. The efficiency of a metabolic process determines the growth yield of an organism, or the amount of biomass it produces per amount of substrate consumed. This parameter has important implications in biotechnology and wastewater treatment, where low growth yields are often preferred to minimize the production of microbial biomass. In this study, we investigated respiratory pathways containing NADH dehydrogenases with varied efficiency (i.e., the number of ions translocated per NADH oxidized) in the metal-reducing bacterium Shewanella oneidensis MR-1. We observed that two different respiratory pathways are used concurrently, and at least one pathway must be functional for growth under oxic conditions.


Subject(s)
Bacterial Proteins/metabolism , NADH Dehydrogenase/metabolism , Proton Pumps/metabolism , Shewanella/enzymology , Shewanella/growth & development , Aerobiosis , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Ions , NADH Dehydrogenase/genetics , Oxidation-Reduction , Proton Pumps/genetics , Shewanella/genetics , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...