Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 560: 306-314, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30797073

ABSTRACT

The present study aimed to investigate in vitro DNA transfection efficiency of three novel chitosan derivatives: thiolated trimethyl chitosan (TMC-Cys), methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan(MABCC) and thiolated trimethyl aminobenzyl chitosan(MABC-Cys). After polymer synthesis and characterization, nanoparticles were prepared using these polymers and their size, zeta potential and DNA condensing ability were measured. After that, cytotoxicity and transfection efficiency of nanocomplexes were carried out in three different cells. The results showed that all polymers could condense DNA plasmid strongly from N/P 2 and nanocomplexes had eligible sizes and zeta potentials. Moreover, the nanocomplexes had negligible cytotoxicity and MABC-Cys was the most effective vehicle for gene delivery in HEK-293T cells. In the two other cell lines, SKOV-3 and MCF-7, TMC-Cys exhibited the highest transfection efficiency. This study indicated that chemical structure of these novel chitosan derivatives in the interaction with the cell type can lead to successful gene delivery.


Subject(s)
Chitosan/chemistry , DNA/administration & dosage , Gene Transfer Techniques , Nanoparticles , Cell Line, Tumor , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/therapy , Particle Size , Plasmids/administration & dosage , Polymers/chemistry , Transfection
2.
Int J Biol Macromol ; 95: 574-581, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27867054

ABSTRACT

Chitosan is a natural mucoadhesive, biodegradable, biocompatible and nontoxic polymer which has been used in pharmaceutical industry for a lot of purposes such as dissolution enhancing, absorption enhancing, sustained releasing and protein, gene or drug delivery. Two major disadvantages of chitosan are poor solubility in physiological pH and low efficiency for protein and gene delivery. In this study thiolated methylated N-(4-N,N-dimethylaminobenzyl) chitosan was prepared for the first time in order to improve the solubility and delivery properties of chitosan. This novel chitosan derivative was characterized using 1H NMR, Ellman test, TGA and Zetasizer. Cell toxicity studies were performed on Human Embryonic Kidney 293 (Hek293) cell line using XTT method, to investigate the potential effect of this new derivative on cell viability. 1H NMR results showed that all substitution reactions were successfully carried out. Zeta potential of new derivative at acidic and physiological pHs was greater than chitosan and it revealed an increase in solubility of the derivative. Furthermore, it had no significant cytotoxicity against Hek293 cell line in comparison to chitosan. These findings confirm that this new derivative can be introduced as a suitable compound for biomedical purposes.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Sulfhydryl Compounds/chemistry , Cell Survival/drug effects , Chitosan/toxicity , Drug Carriers/toxicity , HEK293 Cells , Humans , Solubility , Sulfhydryl Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...