Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6856, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514760

ABSTRACT

The use of nature-based solutions (NBS) for coastal climate adaptation has broad and growing interest, but NBS are rarely assessed with the same rigor as traditional engineering solutions or with respect to future climate change scenarios. These gaps pose challenges for the use of NBS for climate adaptation. Here, we value the flood protection benefits of stakeholder-identified marsh restoration under current and future climate change within San Francisco Bay, a densely urbanized estuary, and specifically on the shores of San Mateo County, the county most vulnerable to future flooding in California. Marsh restoration provides a present value of $21 million which increases to over $100 million with 0.5 m of sea level rise (SLR), and to about $500 million with 1 m of SLR. There are hotspots within the county where marsh restoration delivers very high benefits for adaptation, which reach $9 million/hectare with likely future sea level and storm conditions. Today's investments in nature and community resilience can result in increasing payoffs as climate change progresses and risk increases.

2.
Sci Rep ; 6: 35925, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811961

ABSTRACT

Submarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba. Tsunamis caused by slope failures with terminal landslide velocity of 20 ms-1 will either dissipate while traveling through the Straits of Florida, or generate a maximum wave of 1.5 m at the Florida coast. Modeling a worst-case scenario with a calculated terminal landslide velocity generates a wave of 4.5 m height. The modeled margin collapse in southwestern Great Bahama Bank potentially has a high impact on northern Cuba, with wave heights between 3.3 to 9.5 m depending on the collapse velocity. The short distance and travel time from the source areas to densely populated coastal areas would make the Florida Keys and Miami vulnerable to such low-probability but high-impact events.

SELECTION OF CITATIONS
SEARCH DETAIL
...