Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 92(1101): 20180886, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30994036

ABSTRACT

OBJECTIVE: Evaluation of a data-driven, model-based classification approach to discriminate idiopathic Parkinson's disease (PD) patients from healthy controls (HC) based on between-network connectivity in whole-brain resting-state functional MRI (rs-fMRI). METHODS: Whole-brain rs-fMRI (EPI, TR = 2.2 s, TE = 30 ms, flip angle = 90°. resolution = 3.1 × 3.1 × 3.1 mm, acquisition time ≈ 11 min) was assessed in 42 PD patients (medical OFF) and 47 HC matched for age and gender. Between-network connectivity based on full and L2-regularized partial correlation measures were computed for each subject based on canonical functional network architectures of two cohorts at different levels of granularity (Human Connectome Project: 15/25/50/100/200 networks; 1000BRAINS: 15/25/50/70 networks). A Boosted Logistic Regression model was trained on the correlation matrices using a nested cross-validation (CV) with 10 outer and 10 inner folds for an unbiased performance estimate, treating the canonical functional network architecture and the type of correlation as hyperparameters. The number of boosting iterations was fixed at 100. The model with the highest mean accuracy over the inner folds was trained using an non-nested 10-fold 20-repeats CV over the whole dataset to determine feature importance. RESULTS: Over the outer folds the mean accuracy was found to be 76.2% (median 77.8%, SD 18.2, IQR 69.4 - 87.1%). Mean sensitivity was 81% (median 80%, SD 21.1, IQR 75 - 100%) and mean specificity was 72.7% (median 75%, SD 20.4, IQR 66.7 - 80%). The 1000BRAINS 50-network-parcellation, using full correlations, performed best over the inner folds. The top features predominantly included sensorimotor as well as sensory networks. CONCLUSION: A rs-fMRI whole-brain-connectivity, data-driven, model-based approach to discriminate PD patients from healthy controls shows a very good accuracy and a high sensitivity. Given the high sensitivity of the approach, it may be of use in a screening setting. ADVANCES IN KNOWLEDGE: Resting-state functional MRI could prove to be a valuable, non-invasive neuroimaging biomarker for neurodegenerative diseases. The current model-based, data-driven approach on whole-brain between-network connectivity to discriminate Parkinson's disease patients from healthy controls shows promising results with a very good accuracy and a very high sensitivity.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
2.
Eur Radiol ; 28(12): 4949-4958, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29948072

ABSTRACT

OBJECTIVES: The pathogenesis leading to poor functional outcome after aneurysmal subarachnoid haemorrhage (aSAH) is multifactorial and not fully understood. We evaluated a machine learning approach based on easily determinable clinical and CT perfusion (CTP) features in the course of patient admission to predict the functional outcome 6 months after ictus. METHODS: Out of 630 consecutive subarachnoid haemorrhage patients (2008-2015), 147 (mean age 54.3, 66.7% women) were retrospectively included (Inclusion: aSAH, admission within 24 h of ictus, CTP within 24 h of admission, documented modified Rankin scale (mRS) grades after 6 months. Exclusion: occlusive therapy before first CTP, previous aSAH, CTP not evaluable). A random forests model with conditional inference trees was optimised and trained on sex, age, World Federation of Neurosurgical Societies (WFNS) and modified Fisher grades, aneurysm in anterior vs. posterior circulation, early external ventricular drainage (EVD), as well as MTT and Tmax maximum, mean, standard deviation (SD), range, 75th quartile and interquartile range to predict dichotomised mRS (≤ 2; > 2). Performance was assessed using the balanced accuracy over the training and validation folds using 20 repeats of 10-fold cross-validation. RESULTS: In the final model, using 200 trees and the synthetic minority oversampling technique, median balanced accuracy was 84.4% (SD 0.7) over the training folds and 70.9% (SD 1.2) over the validation folds. The five most important features were the modified Fisher grade, age, MTT range, WFNS and early EVD. CONCLUSIONS: A random forests model trained on easily determinable features in the course of patient admission can predict the functional outcome 6 months after aSAH with considerable accuracy. KEY POINTS: • Features determinable in the course of admission of a patient with aneurysmal subarachnoid haemorrhage (aSAH) can predict the functional outcome 6 months after the occurrence of aSAH. • The top five predictive features were the modified Fisher grade, age, the mean transit time (MTT) range from computed tomography perfusion (CTP), the WFNS grade and the early necessity for an external ventricular drainage (EVD). • The range between the minimum and the maximum MTT may prove to be a valuable biomarker for detrimental functional outcome.


Subject(s)
Intracranial Aneurysm , Subarachnoid Hemorrhage , Tomography, X-Ray Computed/methods , Adult , Aged , Cross-Sectional Studies , Female , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/physiopathology , Machine Learning , Male , Middle Aged , Patient Admission/statistics & numerical data , Predictive Value of Tests , Retrospective Studies , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...