Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1532, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318315

ABSTRACT

Anxiety disorders are complex diseases, and often co-occur with depression. It is as yet unclear if a common neural circuit controls anxiety-related behaviors in both anxiety-alone and comorbid conditions. Here, utilizing the chronic social defeat stress (CSDS) paradigm that induces singular or combined anxiety- and depressive-like phenotypes in mice, we show that a ventral tegmental area (VTA) dopamine circuit projecting to the basolateral amygdala (BLA) selectively controls anxiety- but not depression-like behaviors. Using circuit-dissecting ex vivo electrophysiology and in vivo fiber photometry approaches, we establish that expression of anxiety-like, but not depressive-like, phenotypes are negatively correlated with VTA → BLA dopamine neuron activity. Further, our optogenetic studies demonstrate a causal link between such neuronal activity and anxiety-like behaviors. Overall, these data establish a functional role for VTA → BLA dopamine neurons in bi-directionally controlling anxiety-related behaviors not only in anxiety-alone, but also in anxiety-depressive comorbid conditions in mice.


Subject(s)
Basolateral Nuclear Complex , Animals , Anxiety , Anxiety Disorders , Dopaminergic Neurons/metabolism , Mesencephalon , Mice , Stress, Psychological , Ventral Tegmental Area/physiology
2.
J Am Chem Soc ; 143(37): 15073-15083, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34520194

ABSTRACT

Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.


Subject(s)
Antineoplastic Agents , Kelch-Like ECH-Associated Protein 1 , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Models, Molecular , Proteolysis , Triple Negative Breast Neoplasms
3.
Cell Metab ; 31(3): 448-471, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130879

ABSTRACT

The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.


Subject(s)
Brain/physiology , Circadian Rhythm/physiology , Gastrointestinal Microbiome , Animals , Host Microbial Interactions , Humans , Inflammation/pathology , Models, Genetic
4.
Neurobiol Dis ; 134: 104669, 2020 02.
Article in English | MEDLINE | ID: mdl-31707118

ABSTRACT

Dysfunction of medial prefrontal cortex (mPFC) in association with imbalance of inhibitory and excitatory neurotransmission has been implicated in depression. However, the precise cellular mechanisms underlying this imbalance, particularly for GABAergic transmission in the mPFC, and the link with the rapid acting antidepressant ketamine remains poorly understood. Here we determined the influence of chronic unpredictable stress (CUS), an ethologically validated model of depression, on synaptic markers of GABA neurotransmission, and the influence of a single dose of ketamine on CUS-induced synaptic deficits in mPFC of male rodents. The results demonstrate that CUS decreases GABAergic proteins and the frequency of inhibitory post synaptic currents (IPSCs) of layer V mPFC pyramidal neurons, concomitant with depression-like behaviors. In contrast, a single dose of ketamine can reverse CUS-induced deficits of GABA markers, in conjunction with reversal of CUS-induced depressive-like behaviors. These findings provide further evidence of impairments of GABAergic synapses as key determinants of depressive behavior and highlight ketamine-induced synaptic responses that restore GABA inhibitory, as well as glutamate neurotransmission.


Subject(s)
Antidepressive Agents/administration & dosage , Depression/physiopathology , Ketamine/administration & dosage , Neurons/drug effects , Prefrontal Cortex/drug effects , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/physiology , Animals , Disease Models, Animal , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice, Inbred C57BL , Neurons/physiology , Prefrontal Cortex/physiopathology
5.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31460832

ABSTRACT

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Subject(s)
Bacteria/metabolism , Brain Diseases/microbiology , Brain/microbiology , Gastrointestinal Microbiome , Intestines/microbiology , Age Factors , Aging , Animals , Bacteria/immunology , Bacteria/pathogenicity , Behavior , Brain/immunology , Brain/metabolism , Brain/physiopathology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Brain Diseases/psychology , Dysbiosis , Enteric Nervous System/metabolism , Enteric Nervous System/microbiology , Enteric Nervous System/physiopathology , Host-Pathogen Interactions , Humans , Intestines/immunology , Neuroimmunomodulation , Neuronal Plasticity , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...