Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 211(1): 81-90, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37154711

ABSTRACT

Recent thymic emigrant (RTE) cells are nascent T cells that continue their post-thymic maturation in the periphery and dominate T cell immune responses in early life and in adults having undergone lymphodepletion regimens. However, the events that govern their maturation and their functionality as they transition to mature naive T cells have not been clearly defined. Using RBPJind mice, we were able to identify different stages of RTE maturation and interrogate their immune function using a T cell transfer model of colitis. As CD45RBlo RTE cells mature, they transition through a CD45RBint immature naive T (INT) cell population that is more immunocompetent but shows a bias toward IL-17 production at the expense of IFN-γ. Additionally, the levels of IFN-γ and IL-17 produced in INT cells are highly dependent on whether Notch signals are received during INT cell maturation or during their effector function. IL-17 production by INT cells showed a total requirement for Notch signaling. Loss of Notch signaling at any stage of INT cells resulted in an impaired colitogenic effect of INT cells. RNA sequencing of INT cells that had matured in the absence of Notch signals showed a reduced inflammatory profile compared with Notch-responsive INT cells. Overall, we have elucidated a previously unknown INT cell stage, revealed its intrinsic bias toward IL-17 production, and demonstrated a role for Notch signaling in INT cell peripheral maturation and effector function in the context of a T cell transfer model of colitis.


Subject(s)
Colitis , T-Lymphocytes , Mice , Animals , Thymus Gland , Interleukin-17 , Signal Transduction
2.
Nat Commun ; 12(1): 5023, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408144

ABSTRACT

T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-µbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αß T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-µbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Calcium-Binding Proteins/immunology , Hematopoietic Stem Cells/cytology , Lymphopoiesis , Primary Immunodeficiency Diseases/therapy , T-Lymphocytes/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, CD34/genetics , Antigens, CD34/immunology , Calcium-Binding Proteins/genetics , Cell Lineage , Cell- and Tissue-Based Therapy , Cells, Cultured , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/immunology , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/physiopathology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...