Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 42(1): 50-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33131168

ABSTRACT

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


Subject(s)
DNA Copy Number Variations , Exome , Algorithms , Exome/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Reproducibility of Results , Exome Sequencing
3.
Mol Genet Genomic Med ; 8(5): e1197, 2020 05.
Article in English | MEDLINE | ID: mdl-32130795

ABSTRACT

BACKGROUND: Musculocontractural Ehlers-Danlos Syndrome (mcEDS) is a rare connective tissue disorder caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE), both of which result in defective dermatan sulfate biosynthesis. Forty-one patients with mcEDS-CHST14 and three patients with mcEDS-DSE have been described in the literature. METHODS: Clinical, molecular, and glycobiological findings in three additional patients with mcEDS-DSE were investigated. RESULTS: Three patients from two families shared craniofacial characteristics (hypertelorism, blue sclera, midfacial hypoplasia), skeletal features (pectus and spinal deformities, characteristic finger shapes, progressive talipes deformities), skin features (fine or acrogeria-like palmar creases), and ocular refractive errors. Homozygous pathogenic variants in DSE were found: c.960T>A/p.Tyr320* in patient 1 and c.996dupT/p.Val333Cysfs*4 in patients 2 and 3. No dermatan sulfate was detected in the urine sample from patient 1, suggesting a complete depletion of DS. CONCLUSION: McEDS-DSE is a congenital multisystem disorder with progressive symptoms involving craniofacial, skeletal, cutaneous, and cardiovascular systems, similar to the symptoms of mcEDS-CHST14. However, the burden of symptoms seems lower in patients with mcEDS-DSE.


Subject(s)
Ehlers-Danlos Syndrome/genetics , Loss of Function Mutation , Phenotype , Sulfotransferases/genetics , Adolescent , Chondroitin Sulfates/urine , Dermatan Sulfate/urine , Ehlers-Danlos Syndrome/pathology , Ehlers-Danlos Syndrome/urine , Female , Humans , Male , Young Adult
4.
Clin Genet ; 96(6): 515-520, 2019 12.
Article in English | MEDLINE | ID: mdl-31441039

ABSTRACT

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Subject(s)
Mutation, Missense/genetics , Receptor, Muscarinic M3/genetics , Urinary Bladder Diseases/genetics , Base Sequence , Family , Female , Homozygote , Humans , Malaysia , Male
5.
Clin Genet ; 94(6): 538-547, 2018 12.
Article in English | MEDLINE | ID: mdl-30280376

ABSTRACT

N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Epilepsy/diagnosis , Epilepsy/genetics , Genetic Variation , Receptors, N-Methyl-D-Aspartate/genetics , Adolescent , Alleles , Amino Acid Sequence , Brain/abnormalities , Child , Child, Preschool , Electroencephalography , Female , Genotype , Humans , Male , Molecular Dynamics Simulation , Mutation , Protein Conformation , Receptors, N-Methyl-D-Aspartate/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...