Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 17(9): 1349-55, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26717253

ABSTRACT

Resonance Raman derived initial excited-state structural dynamics provide insight into the photochemical mechanisms of pyrimidine nucleobases, in which the photochemistry appears to be dictated by the C5 and C6 substituents. The absorption and resonance Raman spectra and excitation profiles of 5,6-dideuterouracil were measured to further test this photochemical dependence on the C5 and C6 substituents. The resulting set of excited-state reorganization energies of the observed internal coordinates were calculated and compared to those of other 5- and 6-substituted uracils. The results show that the initial excited-state dynamics along the C5C6 stretch responds to changes in mass at C5 and C6 in the same manner but that the in-plane bends at C5 and C6 are more sensitive to substituents at the C5 position than at the C6 position. In addition, the presence of two deuterium substituents at C5 and C6 decreases the initial excited-state structural dynamics along these in-plane bends, in contrast to what is observed in the presence of two CH3 groups on C5 and C6. The results are discussed in the context of DNA nucleobase photochemistry.


Subject(s)
Spectrum Analysis, Raman/methods , Uracil/chemistry , Molecular Structure
2.
J Phys Chem A ; 118(51): 12161-7, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25455567

ABSTRACT

Substituents on the pyrimidine ring of nucleobases appear to play a major role in determining their initial excited-state structural dynamics and resulting photochemistry. To better understand the determinants of nucleobase initial excited-state structural dynamics, we have measured the absorption and resonance Raman excitation profiles of 6-deuterouracil (6-d-U) and 6-methyluracil (6-MeU). Simulation of the resonance Raman excitation profiles and absorption spectrum with a self-consistent, time-dependent formalism shows the effect of the deuterium and methyl group on the photochemically active internal coordinates, i.e. C5C6 stretch and C5X and C6X bends. The methyl group on either the C5 or C6 position of uracil equally increases the excited-state reorganization energies along the C5C6 stretch. However, a lower reorganization energy of the C5X + C6X bends in 6-MeU than uracil and 5-MeU shows that C6 methyl substituents reduce the bending reorganization energy. In addition, deuterium substitution at either C5 or C6 has a much smaller effect on the initial excited-state structural dynamics than methyl substitution, consistent with a mass effect. These results will be discussed in light of the resulting photochemistry of pyrimidine nucleobases.


Subject(s)
Photochemical Processes , Pyrimidines/chemistry , Spectrum Analysis, Raman , Uracil/analogs & derivatives , Uracil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...