Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 404(2-3): 343-53, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18486194

ABSTRACT

In 2001 and 2002, fluxes of N(2)O, CH(4), CO(2) and N(2) were measured in two constructed wetlands (CW) for domestic wastewater treatment in Estonia. The difference between the median values of N(2)O, CH(4), and N(2) fluxes in the horizontal subsurface flow (HSSF) CWs was non-significant, being 1.3-1.4 and 1.4-4.1 mg m(-2) d(-1) for N(2)O-N and CH(4)-C, and 0.16-0.17 g N m(-2) d(-1) for N(2)-N respectively. The CO(2)-C flux was significantly lower (0.6 g C m(-2) d(-1)) in one of the HSSF filters of a hybrid CW, whereas the single HSSF and VSSF filters emitted 1.7 and 2.0 g C m(-2) d(-1). The median value of CH(4)-C emission in CWs varied from 1.4 to 42.6 g C m(-2) d(-1), being significantly higher in the VSSF filter beds. We also estimated C and N budgets in one of the HSSF CWs (312.5 m(2)) for 2001 and 2002. The total C input into this system was similar in 2001 and 2002, 772 and 719 kg C year(-1), but was differently distributed between constituent fluxes. In 2001, the main input flux was soil and microbial accumulation (663 kg C year(-1) or 85.8% of total C input), followed by plant net primary production (NPP) (10.2%) and wastewater inflow (3.9%). In 2002, 55.7% of annual C input was bound in plant NPP, whereas the increase in soil C formed 28.5% and wastewater inflow 15.7%. The main C output flux was soil respiration, including microbial respiration from soil and litter, and the respiration of roots and rhizomes. It formed 120 (97.5%) and 230 kg C year(-1) (98.2%) in 2001 and 2002 respectively. The measured CH(4)-C flux remained below 0.1% of total C output. The HSSF CW was generally found to be a strong C sink, and its annual C sequestration was 649 and 484 kg C year(-1) per wetland in 2001 and 2002 respectively. However, negative soil and microbial accumulation values in recent years indicate decreasing C sequestration. The average annual N removal from the system was 38-59 kg N year(-1) (46-48% of the initial total N loading). The most important flux of the N budget was N(2)-N emission (22.7 kg in 2001 and 15.2 kg in 2002), followed by plant belowground assimilation (2.3 and 11.9 kg N year(-1) in 2001 and 2002), and above-ground assimilation (1.9 and 9.2 kg N year(-1), respectively). N(2)O emission was low: 0.37-0.60 kg N year(-1)(.).


Subject(s)
Carbon/analysis , Ecosystem , Environmental Monitoring , Nitrogen/analysis , Waste Disposal, Fluid/methods , Wetlands , Carbon/metabolism , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Estonia , Methane/analysis , Methane/metabolism , Nitrogen/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Seasons , Time Factors
2.
Article in English | MEDLINE | ID: mdl-15921277

ABSTRACT

We measured nitrous oxide (N2O), dinitrogen (N2), and methane (CH4) fluxes in two constructed wetlands (CW) in Estonia using the closed chamber method and the He-O method in the period from October 2000 to March 2003. Emission rates of N2O-N, N2-N and CH4-C from both CWs varied significantly on a both spatial and temporal scale, ranging from 1 to 2,600, 170 to 130,000, and -1.7 to 87,200 microg m(-2) h(-1) respectively. The average flux of N2O from the microsites in the Kodijärve horizontal subsurface flow (HSSF) CW and Kõo hybrid CW ranged from 27 to 370 and from 72 to 500 microg N2O-N m(-2) h(-1), respectively, whereas the average dinitrogen flux from the microsites in the HSSF CW in Kodijärve was 2-3 magnitudes higher than the N2O flux, ranging from 19,500 to 33,300 microg N2-N m(-2) h(-1). The average methane emissions from the microsites in the Kodijärve HSSF CW and the Kõo hybrid CW ranged from 31 to 12,100 and from 950 to 5,750 microg CH4-C m(-2) h(-1), respectively. The highest emission values for all three gases were observed in the warm period. There was a significant relationship between emission rates and water table depth: CH4 and N2 emission increased and N2O emission decreased when the water table did rise. Although the emission of N2O and CH4 from CWs was found to be relatively high, their global warming potential (GWP) in the time horizon of 100 years is not significant, ranging from 4.5 to 16.3 tonnes of CO2 equivalents per ha per year in Kodijärve and from 12.1 to 17.3 t CO2 equivalents ha(-1) yr(-1) in Kõo.


Subject(s)
Methane/analysis , Nitrous Oxide/analysis , Waste Disposal, Fluid/methods , Water Movements , Ecosystem , Environmental Monitoring , Gases , Greenhouse Effect , Methane/chemistry , Nitrous Oxide/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...